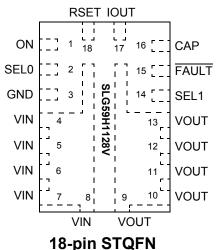


A 22 V, 13.1 m $\Omega,$ 5 A Integrated Power Switch with VIN Lockout Select and Analog Current Monitor Output

General Description

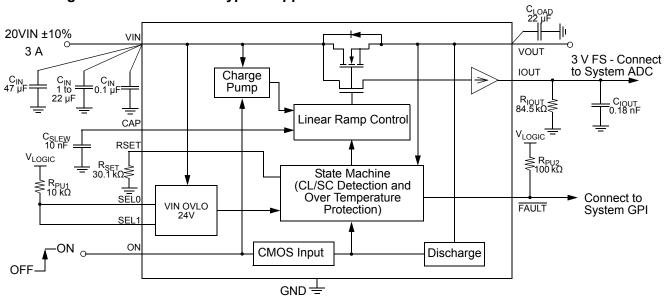

The SLG59H1128V is a high-performance, self-powered 13.1 m Ω NMOS power switch designed for all 4.5 to 22 V power rails up to 5A. Using a proprietary MOSFET design, the SLG59H1128V achieves a stable 13.1 m Ω RDS_{ON} across a wide input voltage range. Using Silego's proprietary CuFETTM technology, the SLG59H1128V package also exhibits a low thermal resistance for high-current operation.

Designed to operate over a -40°C to 85°C range, the SLG59H1128V is available in a low thermal resistance, RoHS-compliant, 1.6 x 3.0 mm STQFN package.

Features

- Wide Operating Input Voltage: 4.5 V to 22 V
- Maximum Continuous Switch Current: 5 A
- Automatic nFET SOA Protection
- High-performance MOSFET Switch Low RDS_{ON}: 13.1 m Ω at V_{IN} = 22 V Low Δ RDS_{ON}/ Δ V_{IN}: <0.05 m Ω /V Low Δ RDS_{ON}/ Δ T: <0.06 m Ω /°C
- 4-Level, Pin-programmable V_{IN} Overvoltage Lockout
- Capacitor-adjustable Inrush Current Control
- Two stage Current Limit Protection: Resistor-adjustable Active Current Limit Internal Short-circuit Current limit
- Open Drain FAULT Signaling
- Analog MOSFET Current Monitor Output : 10 μA/A
- Fast 4 kΩ Output Discharge
- Pb-Free / Halogen-Free / RoHS Compliant Packaging

Pin Configuration



1.6 x 3.0 mm, 0.40mm pitch

Applications

- Power-Rail Switching
- Multifunction Printers
- Large-format Copiers
- Telecommunications Equipment
- High-performance Computing 5 V, 9 V, 12 V, and 20 V Point-of-Load Power Distribution
- Motor Drives

Block Diagram and a 20 V / 3 A Typical Application Circuit

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59H1128V's state machine. ON is an asserted HIGH, level-sensitive CMOS input with $V_{IL} < 0.3$ V and $V_{IH} > 0.9$ V. As the ON pin input circuit does not have an internal pull-down resistor, connect this pin to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller – do not allow this pin to be open-circuited.
2	SEL0	Input	As level-sensitive, CMOS inputs with $V_{IL} < 0.3 V$ and $V_{IH} > 1.65 V$, the SEL0 (LSB) and the SEL1 (MSB) pins select one of four V_{IN} overvoltage lockout thresholds. Please see the Applications Section for additional information and the Electrical Characteristics table for the V_{IN} overvoltage thresholds. A logic LOW on either pin is achieved by connecting the pin of interest to GND; a logic HIGH on either pin is achieved by connecting a 10 k Ω external resistor from the pin in question to the system's local logic supply.
3	GND	GND	Pin 3 is the main ground connection for the SLG59H1128V's internal charge pump, its gate drive and current-limit circuits as well as its internal state machine. Therefore, use a short, stout connection from Pin 3 to the system's analog or power plane.
4-8	VIN	MOSFET	VIN supplies the power for the operation of the SLG59H1128V, its internal control circuitry, and the drain terminal of the nFET power switch. With 5 pins fused together at VIN, connect a 47 μ F (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VIN should be rated at 50 V or higher.
9-13	VOUT	MOSFET	Source terminal of n-channel MOSFET (5 pins fused for VOUT). Connect a 22 μ F (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VOUT should be rated at 50 V or higher.
14	SEL1	Input	Please see SEL0 Pin Description above
15	FAULT	Output	An open drain output, \overline{FAULT} is asserted within \overline{TFAULT}_{LOW} when a V _{IN} overvoltage, a current-limit, or an over-temperature condition is detected. FAULT is deasserted within \overline{TFAULT}_{HIGH} when the fault condition is removed. Connect an 100 k Ω external resistor from the FAULT pin to local system logic supply.
16	САР	Output	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the V _{OUT} slew rate and overall turn-on time of the SLG59H1128V. For best performance, the range for C _{SLEW} values are 10 nF \leq C _{SLEW} \leq 20 nF – please see typical characteristics for additional information. Capacitors used at the CAP pin should be rated at 10 V or higher. Please consult Applications Section on how to select C _{SLEW} based on V _{OUT} slew rate and loading conditions.
17	IOUT	Output	IOUT is the SLG59H1128V's power MOSFET load current monitor output. As an analog output current, this signal when applied to a ground-reference resistor generates a voltage proportional to the current through the n-channel MOSFET. The I _{OUT} transfer characteristic is typically 10 μ A/A with a voltage compliance range of 0.5 V \leq V _{IOUT} \leq 4 V. Optimal I _{OUT} linearity is exhibited for 0.5 A \leq I _{DS} \leq 5 A. In addition, it is recommended to bypass the IOUT pin to GND with a 0.18 nF capacitor.
18	RSET	Input	A 1%-tolerance, metal-film resistor between 18 k Ω and 91 k Ω sets the SLG59H1128V's active current limit. A 91 k Ω resistor sets the SLG59H1128V's active current limit to 1 A and a 18 k Ω resistor sets the active current limit to 5 A.

Ordering Information

Part Number	Туре	Production Flow
SLG59H1128V	STQFN 18L FC	Industrial, -40 °C to 85 °C
SLG59H1128VTR	STQFN 18L FC (Tape and Reel)	Industrial, -40 °C to 85 °C

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
		Continuous	-0.3		30	V
V _{IN} to GND	Power Switch Input Voltage to GND	Maximum pulsed V _{IN} , pulse width < 0.1 s			32	V
$V_{\mbox{OUT}}$ to \mbox{GND}	Power Switch Output Voltage to GND		-0.3		V _{IN}	V
ON, SEL[1,0], CAP, R <u>SET, I</u> OUT, and FAULT to GND	ON, SEL[1,0], CAP, RSET, IOUT, and FAULT Pin Voltages to GND		-0.3		7	V
Τ _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
ESD _{CDM}	ESD Protection	Charged Device Model	500			V
MSL	Moisture Sensitivity Level			1	L	
θ _{JA}	Package Thermal Resistance, Junction-to-Ambient	1.6 x 3.0 mm 18L STQFN; De- termined with the device mount- ed onto a 1 in ² , 1 oz. copper pad of FR-4 material		40		°C/W
MOSFET IDS _{CONT}	Continuous Current from VIN to VOUT	T _J < 150°C			5	Α
		Maximum pulsed switch current, pulse width < 1 ms			6	A

only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

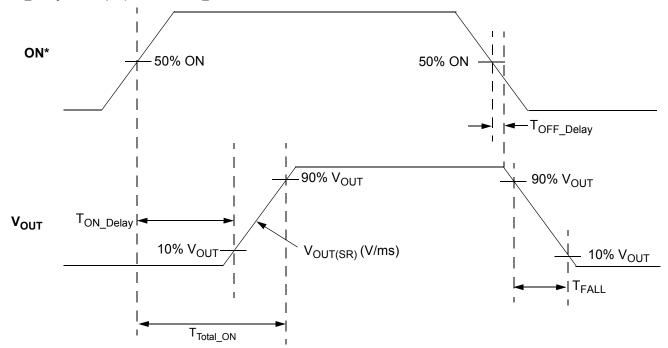
 $4.5~\text{V} \leq \text{V}_{\text{IN}} \leq 22~\text{V};~\text{C}_{\text{IN}} = 47~\mu\text{F},~\text{T}_{\text{A}} = -40^{\circ}\text{C}~\text{to}~85^{\circ}\text{C},~\text{unless otherwise noted}.~\text{Typical values are at}~\text{T}_{\text{A}} = 25^{\circ}\text{C}$

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating Input Voltage		4.5		22	V
		V _{IN} ↑; SEL[1,0] = [0,0]	5.6	6	6.3	V
IN(OVLOHYST)		V _{IN} ↑; SEL[1,0] = [0,1]	10	10.8	11.4	V
	V _{IN} Overvoltage Lockout Threshold	V _{IN} ↑; SEL[1,0] = [1,0]	13.5	14.4	15.2	V
		V _{IN} ↑; SEL[1,0] = [1,1]	22.6	24	25.2	V V V V V V M μA mΩ A A A
VIN(OVLOHYST)	V _{IN} Overvoltage Lockout Hysteresis			2		%
V _{IN(UVLO)}	V _{IN} Undervoltage Lockout Threshold	V _{IN} ↓		3		V
Ι _Q	Quiescent Supply Current	ON = HIGH; I _{DS} = 0 A		0.5	0.6	mA
I _{SHDN}	OFF Mode Supply Current	ON = LOW; I _{DS} = 0 A		1	3	μA
PDS	ON Resistance	T _A = 25°C; I _{DS} = 0.1 A		13.1	14	mΩ
RD3 _{ON}		T _A = 85°C; I _{DS} = 0.1 A		16.8	19	mΩ
MOSFET IDS	Current from VIN to VOUT	Continuous			5	А
1	Active Current Limit, I _{ACL}	V _{OUT} > 0.5 V; R _{SET} = 30.1 kΩ	2.8	3.2	3.6	Α
V _{IN(UVLO)}	Short-circuit Current Limit, I _{SCL}	V _{OUT} < 0.5 V		0.5		Α

Electrical Characteristics (continued)

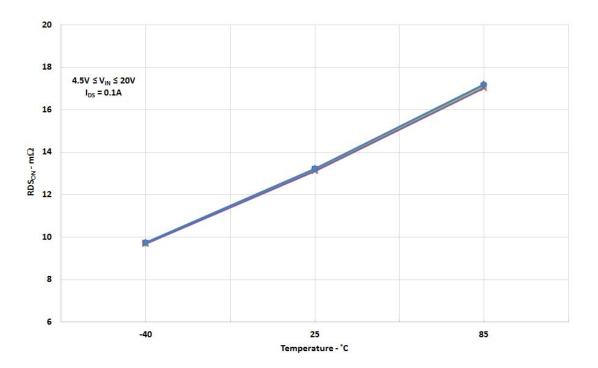
 $4.5 \text{ V} \le \text{V}_{\text{IN}} \le 22 \text{ V}; \text{ C}_{\text{IN}} = 47 \text{ }\mu\text{F}, \text{ T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at }\text{T}_{\text{A}} = 25^{\circ}\text{C}$

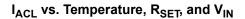
Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
T _{ACL}	Active Current Limit Response Time			120		μs
R _{DSCHRG}	Output Discharge Resistance		3.5	4.4	5.3	kΩ
	Analog MOSFET Current Monitor	I _{DS} = 1 A	9.3	10	11	μA
I _{OUT}	Output	I _{DS} = 3 A	28.5	30	31.5	μA
T _{IOUT}	I _{OUT} Response Time to Change Cur- rent in Main MOSFET	C _{IOUT} = 180 pF; Step load 0 to 2.4 A; 0% to 90% I _{OUT}		45		μs
C _{LOAD}	Output Load Capacitance C _{LOAD} connected from VOUT to GND			22		μF
Tours	ON Delay Time	50% ON to 10% V _{OUT} ↑; V _{IN} = 4.5 V; C _{SLEW} = 10 nF; R _{LOAD} = 100 Ω, C _{LOAD} = 10 μF		0.3	0.5	ms
T _{ON_} Delay		50% ON to 10% V _{OUT} ↑; V _{IN} = 22 V; C _{SLEW} = 10 nF; R _{LOAD} = 100 Ω, C _{LOAD} = 10µF		0.7	1.2	ms
		50% ON to 90% V _{OUT} ↑	Set by	External (C_{SLEW}^{1}	ms
T _{Total_ON}	Total Turn-on Time	50% ON to 90% V _{OUT} ↑; V _{IN} = 4.5 V; C _{SLEW} = 10 nF; R _{LOAD} = 100 Ω, C _{LOAD} = 10 μF		1.4	2.1	ms
_		50% ON to 90% V _{OUT} ↑; V _{IN} = 22 V; C _{SLEW} = 10 nF; R _{LOAD} = 100 Ω, C _{LOAD} = 10 μF		5	8	ms
		10% V _{OUT} to 90% V _{OUT} ↑	Set by	External (SLEW ¹	V/ms
V _{OUT(SR)}	V _{OUT} Slew rate	OUT Slew rate $10\% V_{OUT} \text{ to } 90\% V_{OUT} \uparrow;$ $V_{IN} = 4.5 V \text{ to } 22 V; C_{SLEW} = 10 \text{ nF}$ $R_{LOAD} = 100 \Omega, C_{LOAD} = 10 \mu\text{F}$		3.2	3.9	V/ms
T _{OFF_Delay}	OFF Delay Time	50% ON to $V_{OUT} \downarrow$; V _{IN} = 4.5 V to 22 V; R _{LOAD} = 100 Ω, No C _{LOAD}		18		μs
T _{FALL}	V _{OUT} Fall Time	90% V _{OUT} to 10% V _{OUT} \uparrow ; ON = HIGH-to-LOW; V _{IN} = 4.5 V to 22 V; R _{LOAD} = 100 Ω, No C _{LOAD}	10.4	14	21	μs
TFAULT _{LOW}	FAULT Assertion Time	Ab <u>normal</u> Step Load Current event to FAULT↓; $I_{ACL} = 1 A; V_{IN} = 22 V; R_{SET} = 91 k\Omega;$ switch in 20 Ω load		80		μs
TFAULT _{HIGH}	FAULT De-assertion Time	Delay to \overline{FAULT} after fault condition is removed; I _{ACL} = 1 A; V _{IN} = 22 V; R _{SET} = 91 kΩ; switch out 20 Ω load		180		μs
FAULTVOL	FAULT Output Low Voltage	I _{FAULT} = 1 mA		0.2		V
ON_V _{IH}	ON Pin Input High Voltage		0.9		5	V
ON_V_{IL}	ON Pin Input Low Voltage		-0.3	0	0.3	V
SEL[1,0]_V _{IH}	SEL[1,0] pins Input High Voltage		1.65		4.5	V
SEL[1,0]_V _{IL}	SEL[1,0] pins Input Low Voltage		-0.3		0.3	V
I _{ON(Leakage)}	ON Pin Leakage Current	$1 \text{ V} \leq \text{ON} \leq 5 \text{ V} \text{ or ON} = \text{GND}$			1	μA
THERMON	Thermal Protection Shutdown Threshold			145		°C

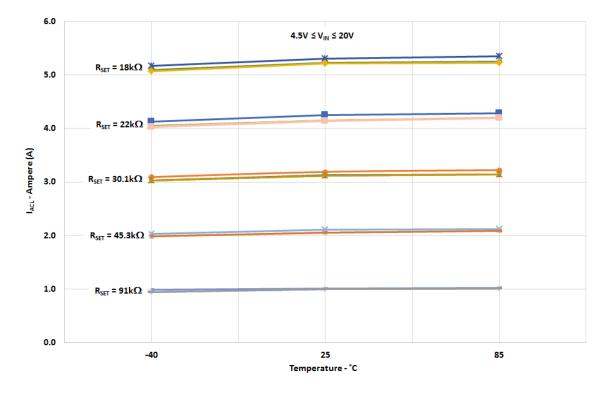

Electrical Characteristics (continued)

 $4.5 \text{ V} \le \text{V}_{\text{IN}} \le 22 \text{ V}; \text{ C}_{\text{IN}} = 47 \text{ }\mu\text{F}, \text{ T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at }\text{T}_{\text{A}} = 25^{\circ}\text{C}$

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
THERMOFF	Thermal Protection Restart Threshold			120		°C
Notes: 1. Refer to typ	pical Timing Parameter vs. C _{SLEW} perform	nance charts for additional information whe	en available).		

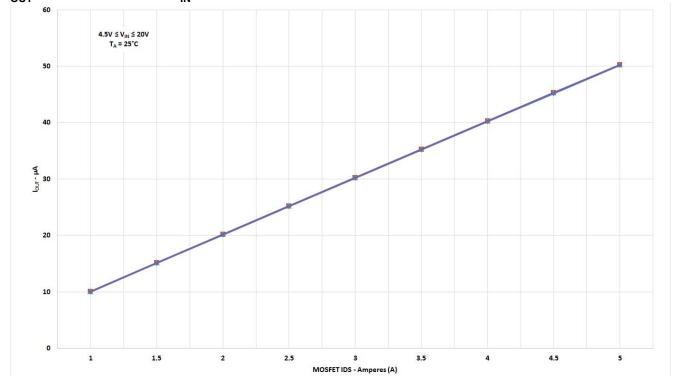


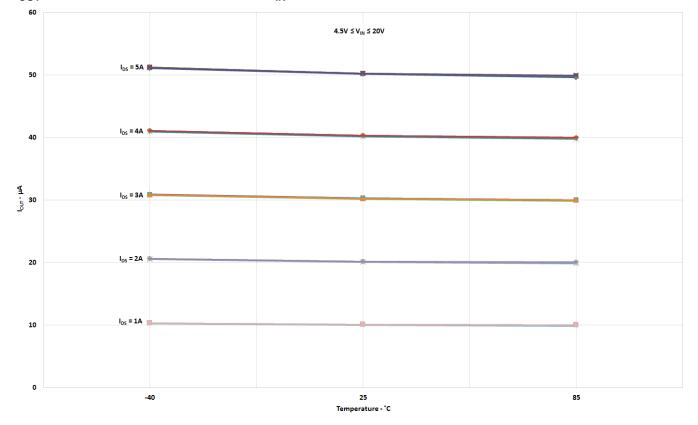

* Rise and Fall times of the ON signal are 100 ns



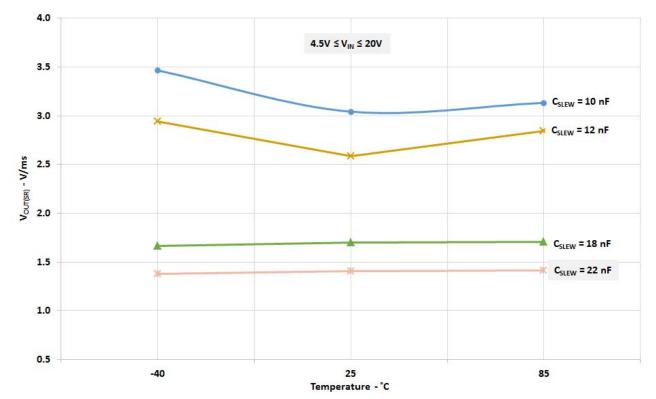
Typical Performance Characteristics

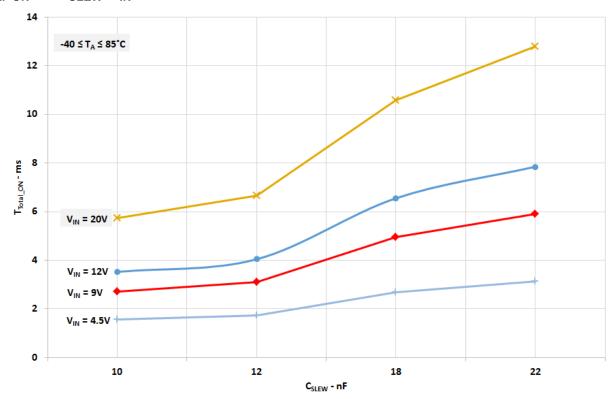
RDS_{ON} vs. Temperature and V_{IN}



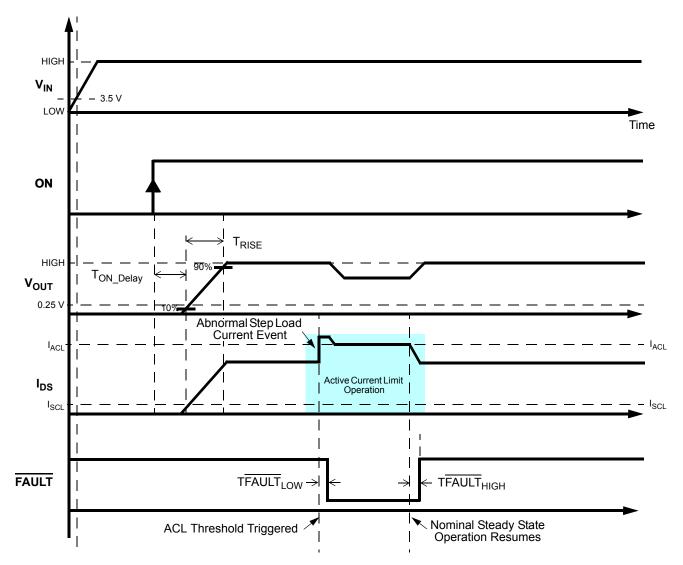


 I_{OUT} vs. MOSFET IDS and $V_{\rm IN}$

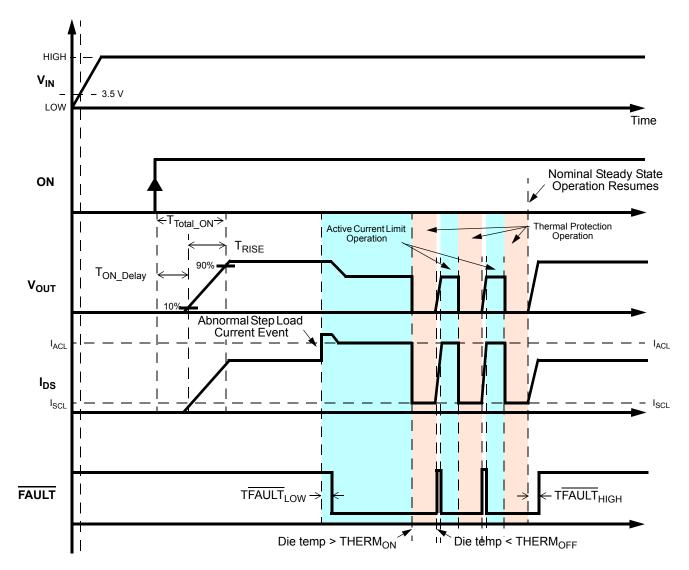

 I_{OUT} vs. Temperature, MOSFET IDS and $V_{\rm IN}$

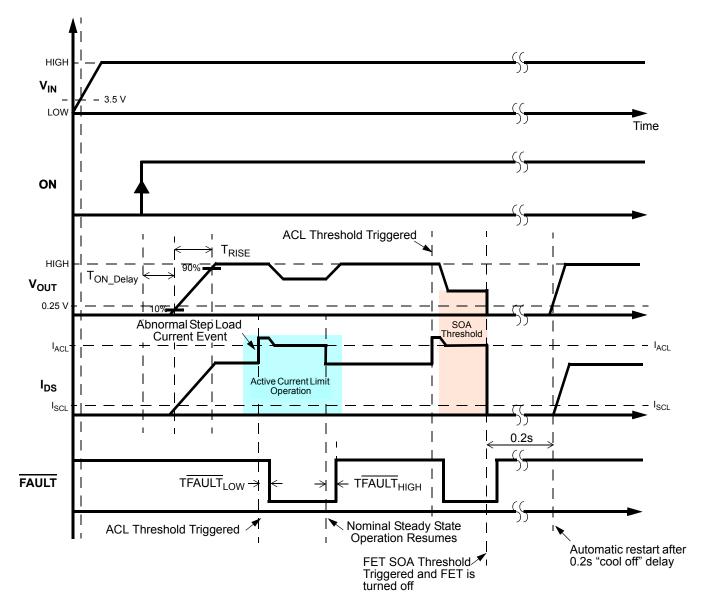


SLG59H1128V


V_{OUT} Slew Rate vs. Temperature, V_{IN}, and C_{SLEW}

 $T_{Total\ ON}$ vs. $C_{SLEW},$ $V_{IN},$ and Temperature




Timing Diagram - Basic Operation including Active Current Limit Protection

Timing Diagram - Active Current Limit & Thermal Protection Operation

Timing Diagram - Basic Operation including Active Current + Internal FET SOA Protection

Typical Turn-on Waveforms

SLG59H1128V Application Diagram

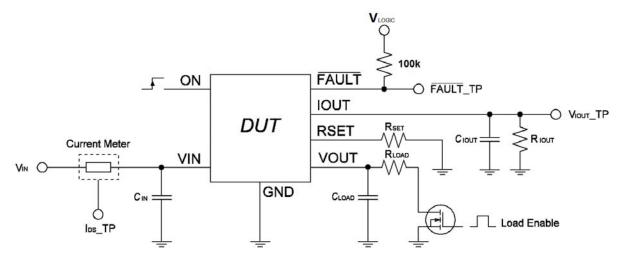


Figure 1. Test setup Application Diagram

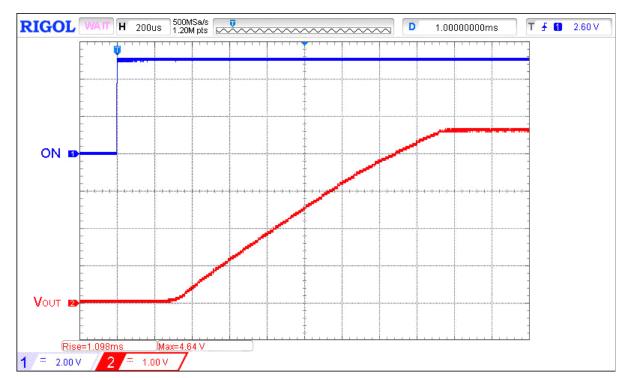


Figure 2. Typical Turn ON operation waveform for V_{IN} = 4.5 V, C_{SLEW} = 10 nF, C_{LOAD} = 10 μ F, R_{LOAD} = 100 Ω

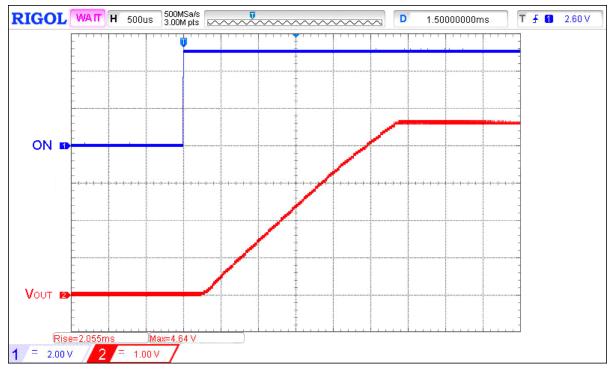


Figure 3. Typical Turn ON operation waveform for V_{IN} = 4.5 V, C_{SLEW} = 18 nF, C_{LOAD} = 10 μ F, R_{LOAD} = 100 Ω

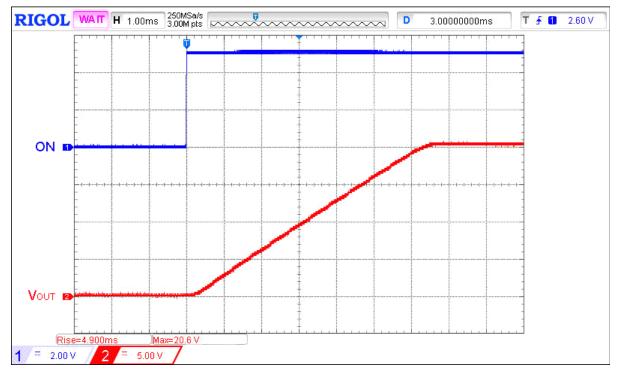


Figure 4. Typical Turn ON operation waveform for V_{IN} = 20 V, C_{SLEW} = 10 nF, C_{LOAD} = 10 μ F, R_{LOAD} = 100 Ω

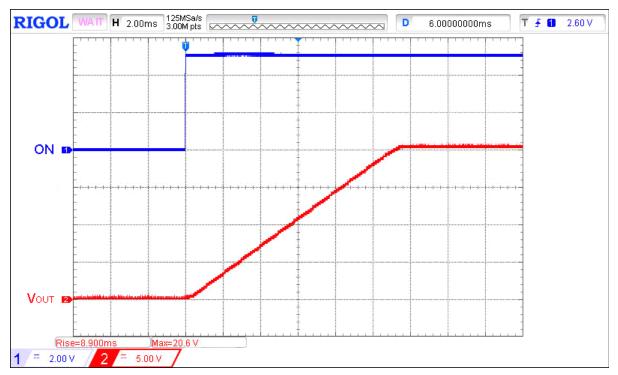


Figure 5. Typical Turn ON operation waveform for V_{IN} = 20 V, C_{SLEW} = 18 nF, C_{LOAD} = 10 μ F, R_{LOAD} = 100 Ω Typical Turn-off Waveforms

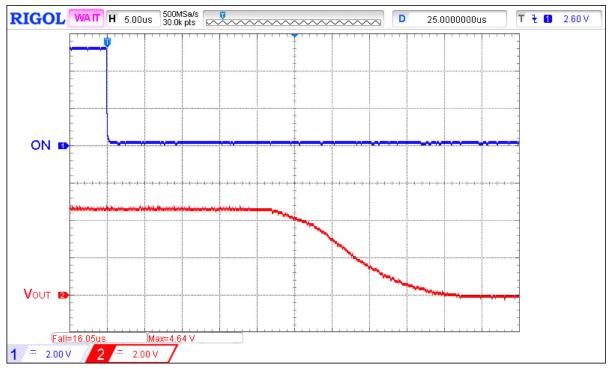


Figure 6. Typical Turn OFF operation waveform for V_{IN} = 4.5 V, C_{SLEW} = 10 nF, no C_{LOAD} , R_{LOAD} = 100 Ω

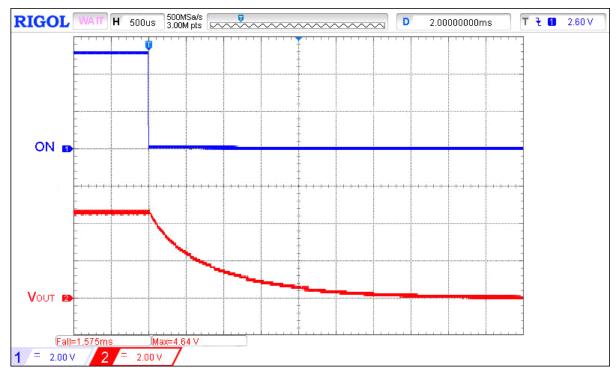


Figure 7. Typical Turn OFF operation waveform for V_{IN} = 4.5 V, C_{SLEW} = 10 nF, C_{LOAD} = 10 μ F, R_{LOAD} = 100 Ω

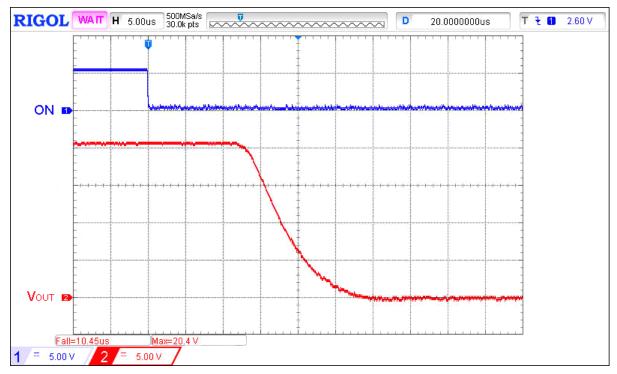


Figure 8. Typical Turn OFF operation waveform for V_{IN} = 20 V, C_{SLEW} = 10 nF, no C_{LOAD} , R_{LOAD} = 100 Ω

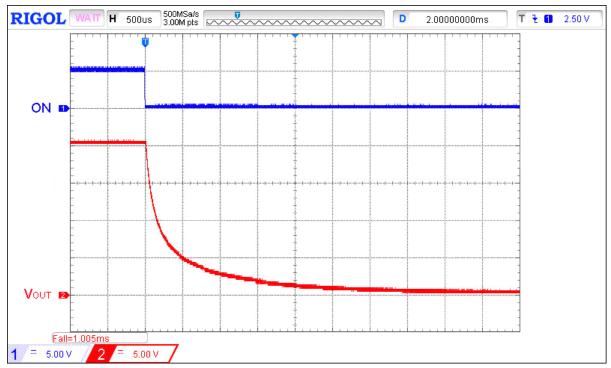
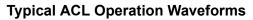



Figure 9. Typical Turn OFF operation waveform for V_{IN} = 20 V, C_{SLEW} = 10 nF, C_{LOAD} = 10 μ F, R_{LOAD} = 100 Ω

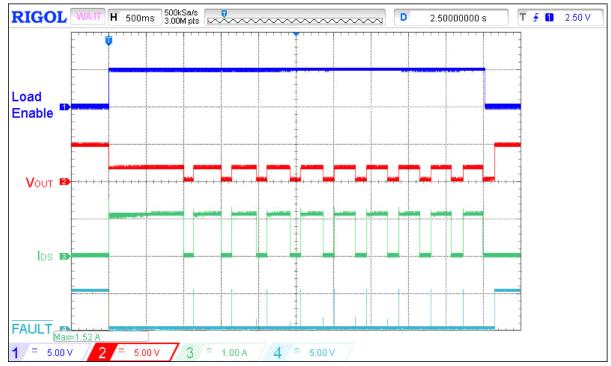


Figure 10. Typical ACL operation waveform for V_{IN} = 4.5 V, C_{LOAD} = 10 μ F, I_{ACL} = 1 A, R_{SET} = 91 k Ω

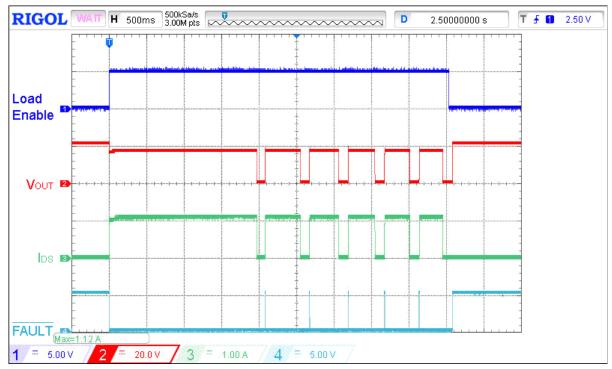


Figure 11. Typical ACL operation waveform for V_{IN} = 20 V, C_{LOAD} = 10 μ F, I_{ACL} = 1 A, R_{SET} = 91 k Ω

Typical SOA Waveforms

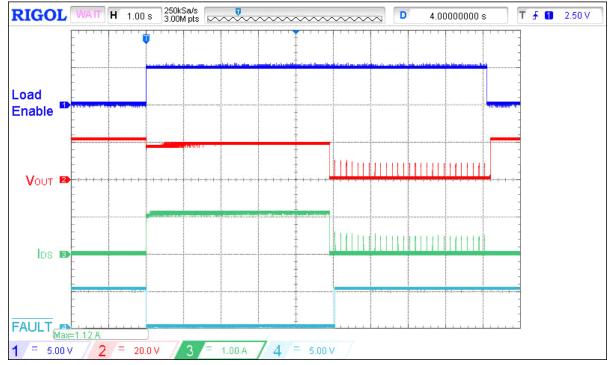


Figure 12. Typical SOA waveform for V_{IN} = 20 V, C_{LOAD} = 10 $\mu\text{F},$ I_{ACL} = 1 A, R_{SET} = 91 k Ω

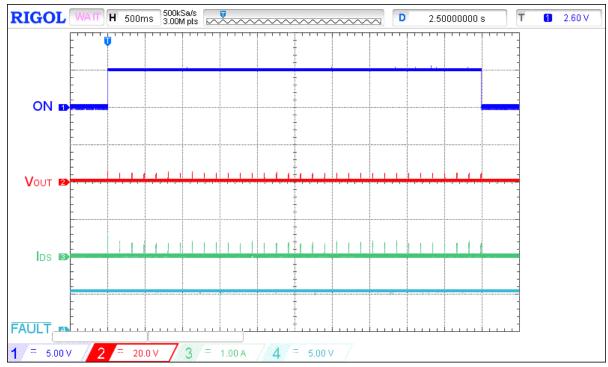
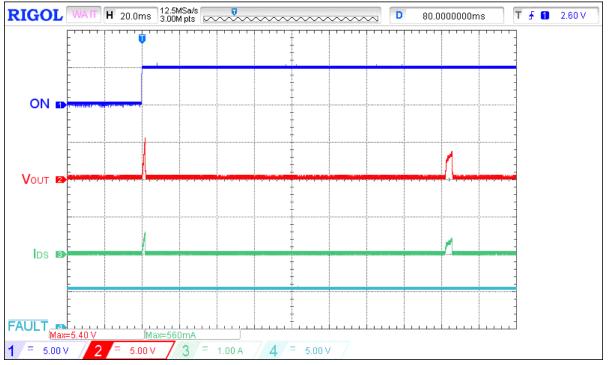
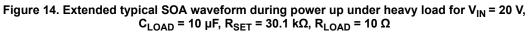




Figure 13. Typical SOA waveform during power up under heavy load for V_{IN} = 20 V, C_{LOAD} = 10 µF, R_{SET} = 30.1 k Ω , R_{LOAD} = 10 Ω

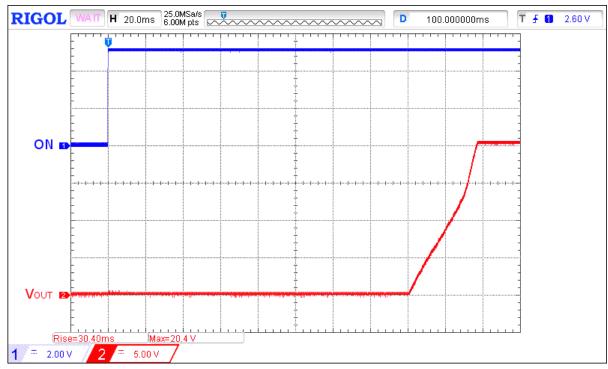
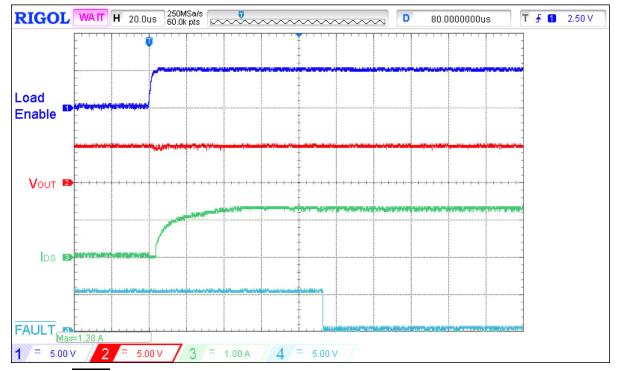
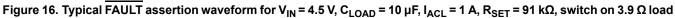




Figure 15. Typical non-monotonic V_{OUT} ramping waveform during power up on heavy load for V_{IN} = 20 V, C_{LOAD} = 470 µF, C_{SLEW} = 10 nF, R_{SET} = 91 k Ω , R_{LOAD} = 42 Ω

Typical FAULT Operation Waveforms

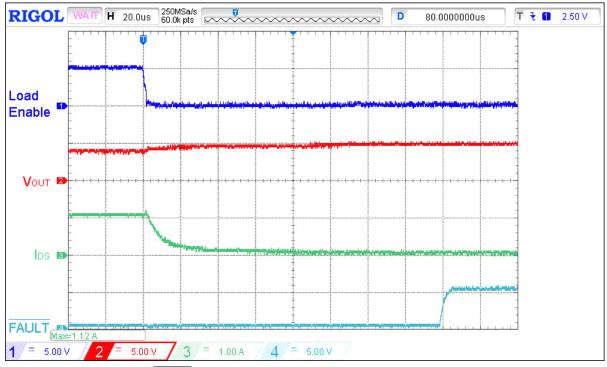
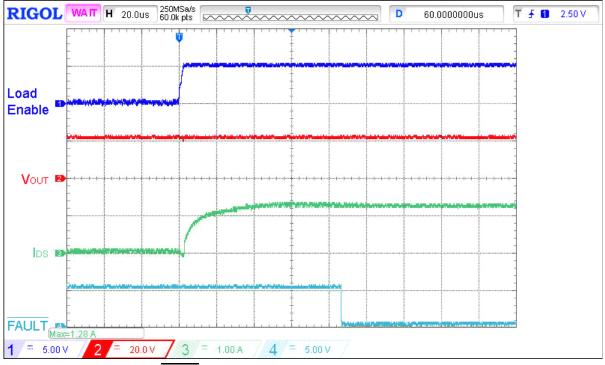
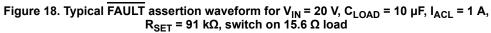




Figure 17. Typical FAULT de-assertion waveform for V_{IN} = 4.5 V, C_{LOAD} = 10 μ F, I_{ACL} = 1 A, R_{SET} = 91 k Ω , switch out 3.9 Ω load

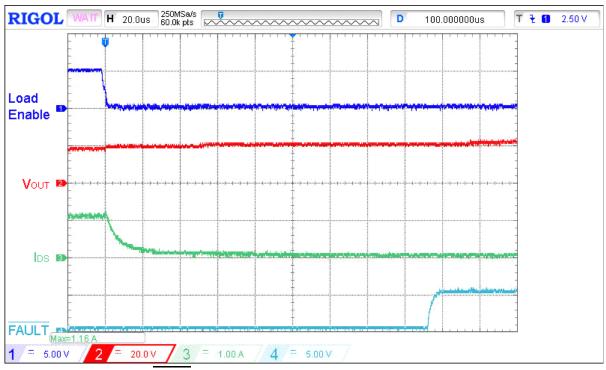
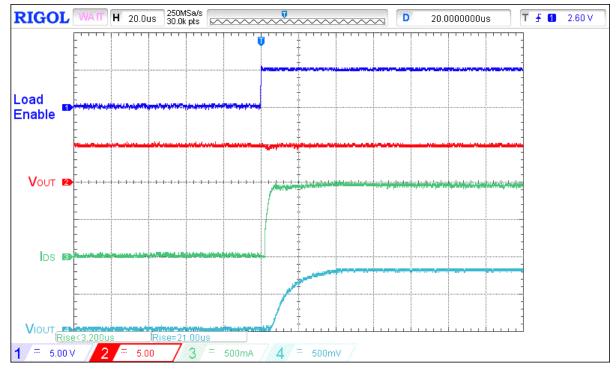
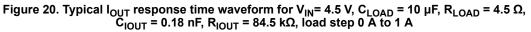




Figure 19. Typical FAULT de-assertion waveform for V_{IN} = 20 V, C_{LOAD} = 10 μ F, I_{ACL} = 1 A, R_{SET} = 91 k Ω , switch out 15.6 Ω load

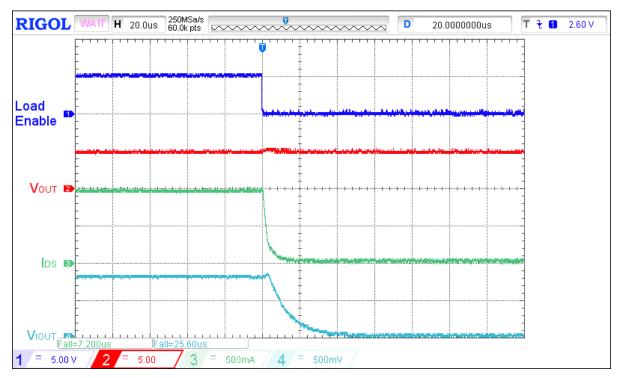


Figure 21. Typical I_{OUT} response time waveform for V_{IN}= 4.5 V, C_{LOAD} = 10 μ F, R_{LOAD} = 4.5 Ω , C_{IOUT} = 0.18 nF, R_{IOUT} = 84.5 k Ω , load step 1 A to 0 A

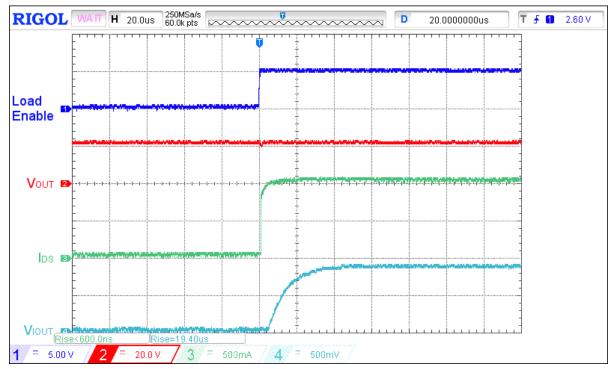


Figure 22. Typical I_{OUT} response time waveform for V_{IN} = 20 V, C_{LOAD} = 10 μ F, R_{LOAD} = 20 Ω , C_{IOUT} = 0.18 nF, R_{IOUT} = 84.5 k Ω , load step 0 A to 1 A

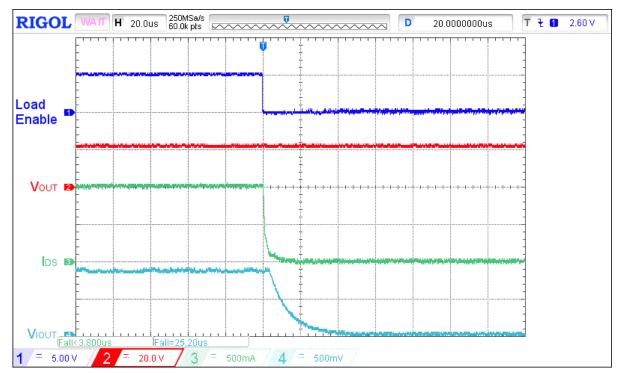


Figure 23. Typical I_{OUT} response time waveform for V_{IN} = 20 V, C_{LOAD} = 10 μ F, R_{LOAD} = 20 Ω , C_{IOUT} = 0.18 nF, R_{IOUT} = 84.5 k Ω , load step 1 A to 0 A

Applications Information

HFET1 Safe Operating Area Explained

Silego's HFET1 integrated power controllers incorporate a number of internal protection features that prevents them from damaging themselves or any other circuit or subcircuit downstream of them. One particular protection feature is their Safe Operation Area (SOA) protection. SOA protection is automatically activated under overpower and, in some cases, under overcurrent conditions. Overpower SOA is activated if package power dissipation exceeds an internal 15 W threshold and HFET1 devices will quickly switch off (open circuit) upon overpower detection and automatically resume (close) nominal operation once overpower condition no longer exists.

One of the possible ways to have an overpower condition trigger SOA protection is when HFET1 products are enabled into heavy output resistive loads and/or into large load capacitors. It is under these conditions to follow carefully the "Safe Start-up Loading" guidance in the Applications section of the datasheet. During an overcurrent condition, HFET1 devices will try to limit the output current to the level set by the external R_{SET} resistor. Limiting the output current, however, causes an increased voltage drop across the FET's channel because the FET's RDS_{ON} increased as well. Since the FET's RDS_{ON} is larger, package power dissipation also increases. If the resultant increase in package power dissipation is higher/equal than 15 W, internal SOA protection will be triggered and the FET will open circuit (switch off). Every time SOA protection is triggered, all HFET1 devices will automatically attempt to resume nominal operation after 160 ms. The automatic retry attempt only allows power-up with SOA at 5 W. This SOA fold back power ensures that the FET survives a short circuit condition. To clear the 5 W SOA fold back, switch the ON pin to "LOW" to power reset SOA to 15 W.

Safe Start-up Condition

SLG59H1128V has built-in protection to prevent over-heating during start-up into a heavy load. Overloading the VOUT pin with a capacitor and a resistor may result in non-monotonic V_{OUT} ramping (*Figure 15*) or repeated restarts (*Figure 13* and *Figure 14*). In general, under light loading on VOUT, V_{OUT} ramping can be controlled with C_{SLEW} value. The following equation serves as a guide:

$$C_{SLEW} = \frac{T_{RISE}}{V_{IN}} \times 4.9 \,\mu\text{A} \times \frac{20}{3}$$

where T_{RISE} = Total rise time from 10% V_{OUT} to 90% V_{OUT} V_{IN} = Input Voltage C_{SLEW} = Capacitor value for CAP pin

When capacitor and resistor loading on VOUT during start up, the following tables will ensure V_{OUT} ramping is monotonic without triggering internal protection:

	Safe Start-up Loading for V _{IN} = 20 V (Monotonic Ramp)								
Slew Rate (V/ms)	Slew Rate (V/ms) $C_{SLEW} (nF)^3$ $C_{LOAD} (\mu F)$ $R_{LOAD} (\Omega)$								
0.5	66.7	500	25						
1.0	33.3	250	25						
1.5	22.2	160	25						
2.0	16.7	120	25						
2.5	13.3	100	25						

	Safe Start-up Loading for V _{IN} = 12 V (Monotonic Ramp)								
Slew Rate (V/ms)	C _{SLEW} (nF) ³	C _{LOAD} (μF)	R_{LOAD} (Ω)						
1	33.3	500	7						
2	16.7	250	7						
3	11.1	160	7						
4	8.3	120	7						
5	6.7	100	7						

Note 3: Select the closest-value tolerance capacitor.

Setting the SLG59H1128V's Active Current Limit

R _{SET} (kΩ)	Active Current Limit (A) ⁴
91	1
45	2
30	3
18	5

Note 4: Active Current Limit accuracy is ±15% over voltage range and temperature range

Setting the SLG59H1128V's Input Overvoltage Lockout Threshold

As shown in the table below, SEL[1,0] selects the V_{IN} overvoltage threshold at which the SLG59H1128V's internal state machine will turn OFF (open circuit) the power MOSFET if V_{IN} exceeds the selected threshold.

SEL1	SEL0	V _{IN(OVLO)} (Тур)
0	0	6 V
0	1	10.8 V
1	0	14.4 V
1	1	24 V

For example, SEL[1,1] would be the most appropriate setting for applications where the steady-state V_{IN} can extend up to 20 V without causing any damage to the SLG59H1128V since the IC is 29-V tolerant.

With an activated SLG59H1128V (ON=HIGH) and at any time V_{IN} crosses the programmed V_{IN} overvoltage threshold, the state machine opens the power switch and asserts the FAULT pin within TFAULT_{LOW}.

In applications with a deactivated or inactive SLG59H1128V ($V_{IN} > V_{IN(UVLO)}$ and ON=LOW) and if the applied V_{IN} is higher than the programmed $V_{IN(OVLO)}$ threshold, the SLG59H1128V's state machine will keep the power switch open circuited if the ON pin is toggled LOW-to-HIGH. In these cases, the FAULT pin will also be asserted within TFAULT_{LOW} and will remain asserted until V_{IN} resumes nominal, steady-state operation.

In all cases, the SLG59H1128V's V_{IN} undervoltage lockout threshold is fixed at $V_{IN(UVLO)}$.

Power Dissipation

The junction temperature of the SLG59H1128V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG59H1128V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD = RDS_{ON} \times I_{DS}^{2}$$

where:

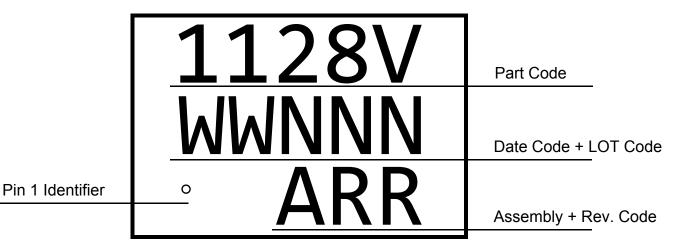
 $\label{eq:pdf} \begin{array}{l} \mathsf{PD} = \mathsf{Power} \mbox{ dissipation, in Watts (W)} \\ \mathsf{RDS}_{\mathsf{ON}} = \mathsf{Power} \mbox{ MOSFET ON resistance, in Ohms } (\Omega) \\ \mathsf{I}_{\mathsf{DS}} = \mathsf{Output} \mbox{ current, in Amps } (\mathsf{A}) \\ \mbox{ and } \end{array}$

$$T_J = PD \times \theta_{JA} + T_A$$

where:

 T_J = Junction temperature, in Celsius degrees (°C) θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) T_A = Ambient temperature, in Celsius degrees (°C)

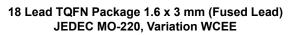
In current-limit mode, the SLG59H1128V's power dissipation can be calculated by taking into account the voltage drop across the power switch ($V_{IN}-V_{OUT}$) and the magnitude of the output current in current-limit mode (I_{ACL}):

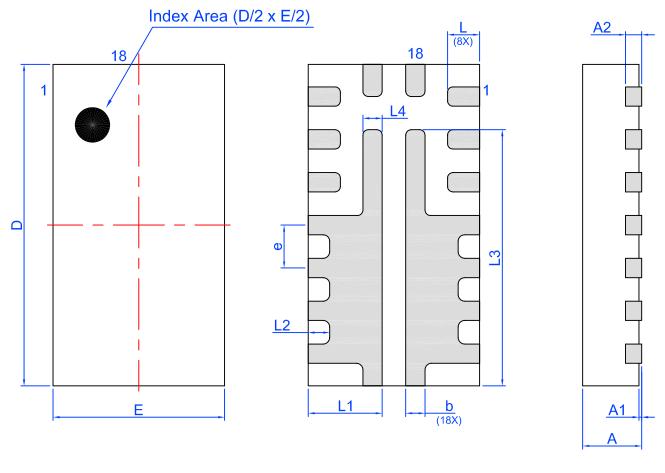

$$\label{eq:pd} \begin{split} \mathsf{PD} &= (\mathsf{V}_{\mathsf{IN}}\text{-}\mathsf{V}_{\mathsf{OUT}}) \times \mathsf{I}_{\mathsf{ACL}} \text{ or} \\ \mathsf{PD} &= (\mathsf{V}_{\mathsf{IN}} - (\mathsf{R}_{\mathsf{LOAD}} \times \mathsf{I}_{\mathsf{ACL}})) \times \mathsf{I}_{\mathsf{ACL}} \end{split}$$

where:

 $\begin{array}{l} \mathsf{PD} = \mathsf{Power dissipation, in Watts} \ (\mathsf{W}) \\ \mathsf{V}_{\mathsf{IN}} = \mathsf{Input Voltage, in Volts} \ (\mathsf{V}) \\ \mathsf{R}_{\mathsf{LOAD}} = \mathsf{Load Resistance, in Ohms} \ (\Omega) \\ \mathsf{I}_{\mathsf{ACL}} = \mathsf{Output limited current, in Amps} \ (\mathsf{A}) \\ \mathsf{V}_{\mathsf{OUT}} = \mathsf{R}_{\mathsf{LOAD}} \times \mathsf{I}_{\mathsf{ACL}} \end{array}$

Package Top Marking System Definition



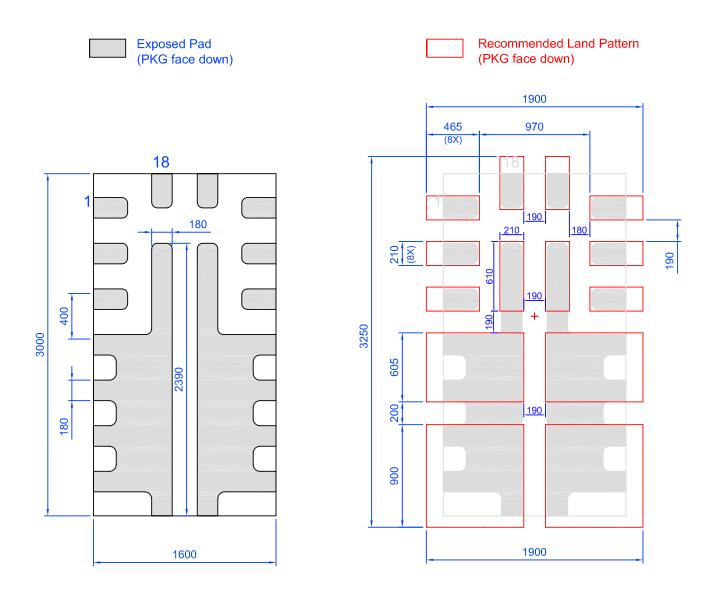

1128V - Part ID Field WW - Date Code Field¹ NNN - Lot Traceability Code Field¹ A - Assembly Site Code Field² RR - Part Revision Code Field²

Note 1: Each character in code field can be alphanumeric A-Z and 0-9 Note 2: Character in code field can be alphabetic A-Z

Package Drawing and Dimensions

Top View

BTM View

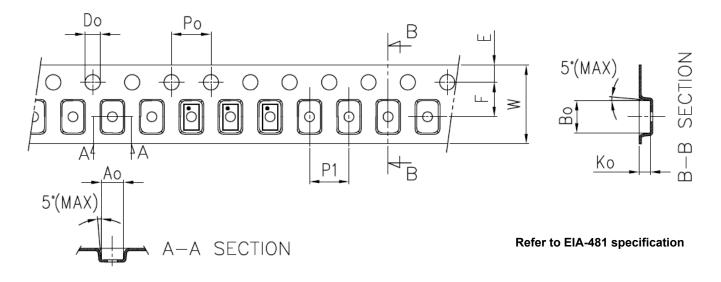

Side View

Unit: mm

Onit. Init	Offic: Hilf										
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max				
A	0.50	0.55	0.60	D	2.95	3.00	3.05				
A1	0.005	-	0.05	E	1.55	1.60	1.65				
A2	0.10	0.15	0.20	L	0.25	0.30	0.35				
b	0.13	0.18	0.23	L1	0.64	0.69	0.74				
е	(0.40 BSC	х И	L2	0.15	0.20	0.25				
L3	2.34	2.39	2.44	L4	0.13	0.18	0.23				

SLG59H1128V 18-pin STQFN PCB Landing Pattern

Note: All dimensions shown in micrometers (µm)



Tape and Reel Specifications

Baakaga	# of	Nominal Max Units		Reel & Leader (min)		Trailer (min)		Таре	Part		
Package Type	# of Pins	of Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STQFN 18L 0.4P FC Green	18	1.6 x 3 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length A0	PocketBTM Width B0	Pocket Depth K0	Index Hole Pitch P0	Pocket Pitch P1	Index Hole Diameter D0	Index Hole to Tape Edge E		Tape Width W
STQFN 18L 0.4P FC Green	1.78	3.18	0.76	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 2.64 mm³ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change
2/24/2017	1.00	Production Release