MINIMUM ORDER QUANTITY

15 000

**SOLDERING** 

CONDITIONS

260 °C/10 s at terminals

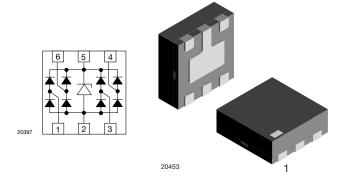
kV

°C

°C

± 30

± 30


-40 to +125

-40 to +150



## Vishay Semiconductors

### **4-Line BUS-Port ESD Protection**



### **MARKING** (example only)



Dot = pin 1 marking XX = date code

YY = type code (see table below)

**ORDERING INFORMATION** 

**PACKAGE** 

NAME

LLP75-6L

### **DESIGN SUPPORT TOOLS** click logo to get started

**ORDERING CODE** 

VBUS54CV-HSF-G4-08

**WEIGHT** 

4.2 mg

**TYPE** 

CODE

UC



**DEVICE NAME** 

VBUS54CV-HSF

**DEVICE NAME** 

VBUS54CV-HSF

ESD immunity

Operating temperature

Storage temperature

PACKAGE DATA

#### **FEATURES**

- Ultra compact LLP75-6L package
- 4-line USB ESD protection
- · Low leakage current

**TAPED UNITS PER REEL** 

(8 mm TAPE ON 7" REEL)

3000

**MOISTURE** 

**SENSITIVITY LEVEL** 

MSL level 1

(according J-STD-020)

 $V_{ESD}$ 

 $T_{J}$ 

 $T_{STG}$ 

- Low load capacitance C<sub>D</sub> = 1.2 pF
- ESD immunity acc. IEC 61000-4-2
  ± 30 kV contact discharge
  ± 30 kV air discharge
- High surge current acc. IEC 61000-4-5  $I_{pp} > 11 A$
- e4 precious metal (e.g. Ag, Au, NiPd, NiPdAu), (no Sn)
- Material categorization: for definitions of compliance please see <a href="https://www.vishav.com/doc?99912">www.vishav.com/doc?99912</a>





ROHS COMPLIANT HALOGEN FREE

GREEN

| ABSOLUTE MAXIMUM RATINGS VBUS54CV-HSF |                                                                                |                 |       |      |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------|-----------------|-------|------|--|--|--|
| PARAMETER                             | TEST CONDITIONS                                                                | SYMBOL          | VALUE | UNIT |  |  |  |
| Peak pulse current                    | Pin 1, 3, 4 or 6 to pin 2 acc. IEC 61000-4-5, $t_p = 8/20 \mu s/\sin gle$ shot | 1               | 11    |      |  |  |  |
|                                       | Pin 5 to pin 2 acc. IEC 61000-4-5; $t_p = 8/20 \mu s$ ; single shot            | ІРРМ            | 13    | Α    |  |  |  |
| Peak pulse power                      | Pin 1, 3, 4 or 6 to pin 2 acc. IEC 61000-4-5, $t_p = 8/20 \mu s/single shot$   | P <sub>PP</sub> | 242   | W    |  |  |  |
|                                       | Pin 5 to pin 2 acc. IEC 61000-4-5; $t_p = 8/20 \mu s$ ; single shot            | і РР            | 246   | VV   |  |  |  |

Contact discharge acc. IEC 61000-4-2; 10 pulses

Air discharge acc. IEC 61000-4-2; 10 pulses

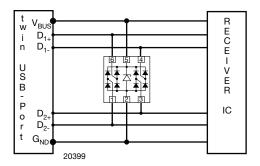
Junction temperature

MOLDING COMPOUND

FLAMMABILITY RATING

UL 94 V-0

Rev. 1.2, 03-May-17 **1** Document Number: 84145




| <b>ELECTRICAL CHARACTERISTICS VBUS54CV-HSF</b> (pin 1, 3, 4, or 6 to pin 2) (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                                                   |                      |      |      |      |       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|------|------|------|-------|--|--|
| PARAMETER                                                                                                                          | TEST CONDITIONS/REMARKS                                           | SYMBOL               | MIN. | TYP. | MAX. | UNIT  |  |  |
| Protection paths                                                                                                                   | Number of lines which can be protected                            | N <sub>channel</sub> | -    | -    | 4    | lines |  |  |
| Reverse stand-off voltage                                                                                                          | Max. reverse working voltage                                      | $V_{RWM}$            | -    | -    | 5.5  | V     |  |  |
| Reverse voltage                                                                                                                    | at I <sub>R</sub> = 0.1 μA                                        | $V_R$                | 5.5  | -    | -    | V     |  |  |
| Reverse current                                                                                                                    | at V <sub>RWM</sub> = 5.5 V                                       | I <sub>R</sub>       | -    | 0.01 | 0.1  | μΑ    |  |  |
| Reverse breakdown voltage                                                                                                          | at I <sub>R</sub> = 1 mA                                          | $V_{BR}$             | 7    | 7.9  | 8.6  | V     |  |  |
| Reverse clamping voltage                                                                                                           | at I <sub>PP</sub> = 11 A                                         | V <sub>C</sub>       | -    | 18   | 22   | V     |  |  |
| Forward clamping voltage                                                                                                           | at I <sub>PP</sub> =11 A                                          | V <sub>F</sub>       | -    | 6.5  | 8    | V     |  |  |
| Capacitance                                                                                                                        | $V_{R}$ (at I/O pin) = 0 V<br>$V_{R}$ (at pin 5) = 5 V; f = 1 MHz | C <sub>D</sub>       | -    | 1.2  | 2.5  | pF    |  |  |
| Line symmetry                                                                                                                      | Difference of the line capacitances                               | dC <sub>D</sub>      | -    | -    | 0.2  | pF    |  |  |

| <b>ELECTRICAL CHARACTERISTICS</b> (pin 5 to pin 2) (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                            |                 |      |      |      |      |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|------|------|------|------|--|
| PARAMETER                                                                                                 | TEST CONDITIONS/REMARKS                    | SYMBOL          | MIN. | TYP. | MAX. | UNIT |  |
| Reverse stand-off voltage                                                                                 | Max. reverse working voltage               | $V_{RWM}$       | -    | -    | 5.5  | V    |  |
| Reverse voltage                                                                                           | at I <sub>R</sub> = 0.1 μA; pin 2 to pin 1 | V <sub>R</sub>  | 5.5  | -    | -    | V    |  |
| Reverse current                                                                                           | at V <sub>RWM</sub> = 5.5 V                | I <sub>R</sub>  | -    | 0.01 | 0.1  | μΑ   |  |
| Reverse breakdown voltage                                                                                 | at I <sub>R</sub> = 1 mA                   | V <sub>BR</sub> | 6.3  | 7.1  | 8    | V    |  |
| Reverse clamping voltage                                                                                  | at I <sub>PP</sub> = 13 A                  | V <sub>C</sub>  | -    | 18   | 22   | V    |  |
| Forward clamping voltage                                                                                  | at I <sub>PP</sub> =13 A                   | V <sub>F</sub>  | -    | -    | 7    | V    |  |
| Capacitance                                                                                               | V <sub>R</sub> (at pin 5) = 0 V; f = 1 MHz | C <sub>D</sub>  | -    | 190  | -    | pF   |  |

#### **APPLICATION NOTE**

With the VBUS54CV-HSF a double, high speed USB-port can be protected against transient voltage signals. Negative transients will be clamped close below the ground level while positive transients will be clamped close above the working range. An avalanche diode clamps the supply line ( $V_{BUS}$  at pin 5) to ground (pin 2). The high speed data lines,  $D_{1+}$ ,  $D_{2+}$ ,  $D_{1-}$  and  $D_{2-}$ , are connected to pin 1, 3, 4 and 6. As long as the signal voltage on the data lines is between the ground- and the  $V_{BUS}$ -level, the low capacitance PN-diodes offer a very high isolation to  $V_{BUS}$ , ground and to the other data lines. But as soon as any transient signal exceeds this working range, one of the PN-diodes gets in the forward mode and clamps the transient to ground or the avalanche break through voltage level.



### TYPICAL CHARACTERISTICS (T<sub>amb</sub> = 25 °C, unless otherwise specified)

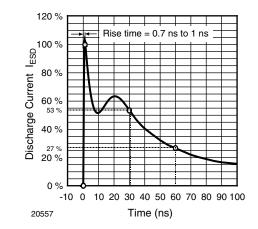



Fig. 1 - ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330  $\Omega$ /150 pF)

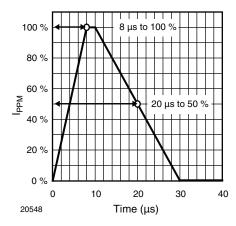



Fig. 2 - 8/20 µs Peak Pulse Current Wave Form acc. IEC 61000-4-5

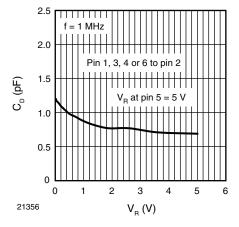



Fig. 3 - Typical Capacitance  $C_D$  vs. Reverse Voltage  $V_R$ 

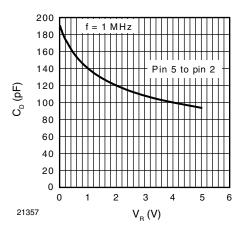



Fig. 4 - Typical Capacitance C<sub>D</sub> vs. Reverse Voltage V<sub>R</sub>

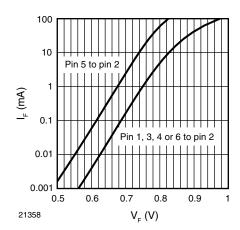



Fig. 5 - Typical Forward Current I<sub>F</sub> vs. Forward current I<sub>R</sub>

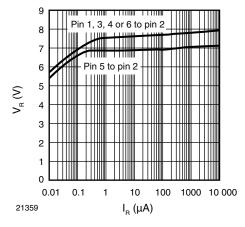
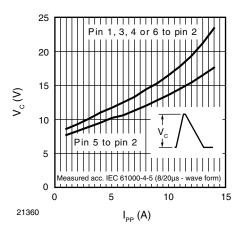




Fig. 6 - Typical Reverse Voltage  $V_{R}$  vs. Reverse Current  $I_{R}$ 



www.vishay.com

Fig. 7 - Typical Peak Clamping Voltage vs. Peak Pulse Current I<sub>PP</sub>

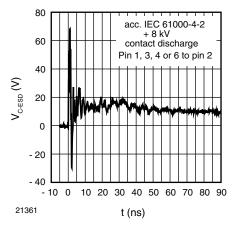



Fig. 8 - Typical Clamping Performance at 8 kV Contact Discharge (acc. IEC 61000-4-2)

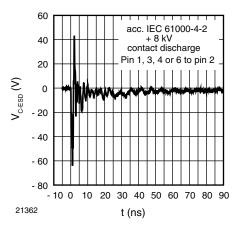



Fig. 9 - Typical Clamping Performance at 8 kV Contact Discharge (acc. IEC 61000-4-2)

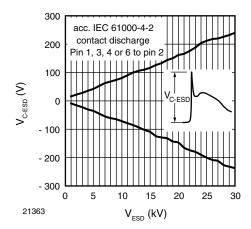
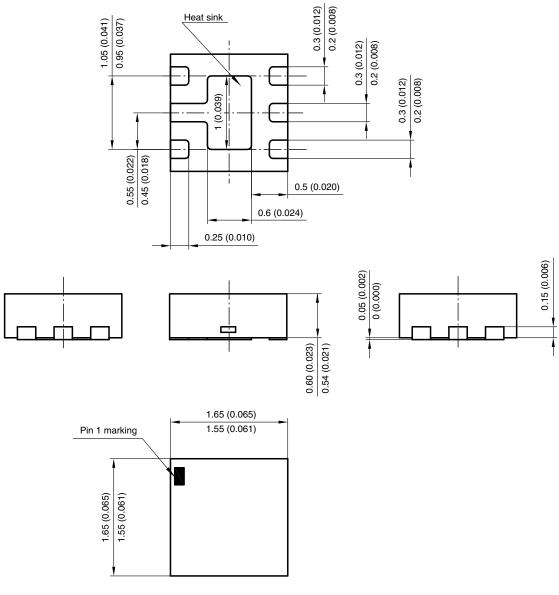
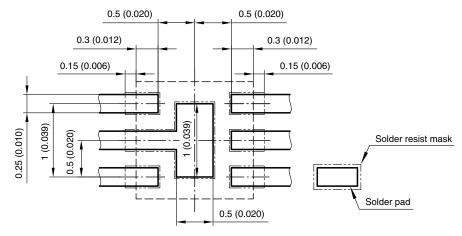




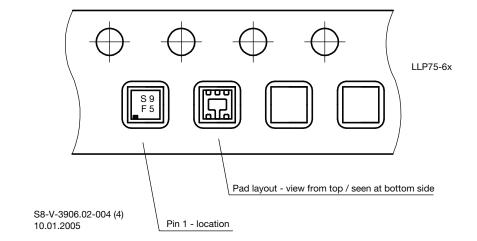

Fig. 10 - Typical Peak Clamping Voltage at ESD Contact Discharge (acc. IEC 61000-4-2)

### PACKAGE DIMENSIONS in millimeters (inches): LLP75-6L



#### Foot print recommendation:




Document no.:S8-V-3906.02-010 (4) Created - Date: 04. MAY 2005

Rev. 4 - Date: 21. March 2006

20454

Rev. 1.2, 03-May-17







## **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.