

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

FGA25S125P

1250 V, 25 A Shorted-anode IGBT

General Description

Using advanced field stop trench and shorted-anode technology, Fairchild's shorted-anode trench IGBTs offer superior conduction and switching performances for soft switching applications. The device can operate in parallel configuration with exceptional avalanche capability. This device is designed for induction heating and microwave oven.

Applications

- Induction Heating, Microwave Oven

Features

- High Speed Switching
- Low Saturation Voltage: $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=1.8 \mathrm{~V} @ \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}$
- High Input Impedance
- RoHS Compliant

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGA25S125P	FGA25S125P _SN00337	TO-3PN	-	-	30

Electrical Characteristics of the IGBT $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Off Characteristics						
BV ${ }_{\text {CES }}$	Collector to Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	1250	-	-	V
$\frac{\Delta \mathrm{BV}_{\mathrm{CES}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Temperature Coefficient of Breakdown Voltage	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	1.2	-	V/ ${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {ces }}$	Collector Cut-Off Current	$\mathrm{V}_{\mathrm{CE}}=1250 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	-	-	1	mA
$\mathrm{I}_{\text {GES }}$	G-E Leakage Current	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GES}}, \mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$	-	-	± 500	nA
On Characteristics						
$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	G-E Threshold Voltage	$\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	4.5	6.0	7.5	V
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	Collector to Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	-	1.8	2.35	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	2.05	-	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C} \end{aligned}$	-	2.16	-	V
$V_{F M}$	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	1.7	2.4	V
		$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	2.1	-	V
Dynamic Characteristics						
$\mathrm{C}_{\text {ies }}$	Input Capacitance	$\begin{aligned} & V_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	2150	-	pF
$\mathrm{C}_{\text {oes }}$	Output Capacitance		-	48	-	pF
$\mathrm{C}_{\text {res }}$	Reverse Transfer Capacitance		-	36	-	pF
Switching Characteristics						
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=10 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \text { Resistive Load, } \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	-	24	-	ns
t_{r}	Rise Time		-	250	-	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time		-	502	-	ns
t_{f}	Fall Time		-	138	-	ns
$\mathrm{E}_{\text {on }}$	Turn-On Switching Loss		-	1085	-	uJ
$\mathrm{E}_{\text {off }}$	Turn-Off Switching Loss		-	580	-	uJ
$\mathrm{E}_{\text {ts }}$	Total Switching Loss		-	1665	-	uJ
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=10 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \text { Resistive Load,, } \mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C} \end{aligned}$	-	21.2	-	ns
t_{r}	Rise Time		-	304	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	490	-	ns
t_{f}	Fall Time		-	232	-	ns
$\mathrm{E}_{\text {on }}$	Turn-On Switching Loss		-	1310	-	uJ
$\mathrm{E}_{\text {off }}$	Turn-Off Switching Loss		-	952	-	uJ
$\mathrm{E}_{\text {ts }}$	Total Switching Loss		-	2262	-	uJ
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{C E}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \\ & \mathrm{~V}_{G E}=15 \mathrm{~V} \end{aligned}$	-	204	-	nC
$\mathrm{Q}_{\text {ge }}$	Gate to Emitter Charge		-	15	-	nC
Q_{gc}	Gate to Collector Charge		-	103	-	nC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

Figure 6. Saturation Voltage vs. $\mathbf{V}_{\text {GE }}$

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

Figure 9. Gate charge Characteristics

Figure 11. Turn-on Characteristics vs. Gate Resistance

Figure 8. Capacitance Characteristics

Figure 10. SOA Characteristics

Figure 12. Turn-off Characteristics vs. Gate Resistance

Typical Performance Characteristics

Figure 13. Turn-on Characteristics vs. Collector Current

Figure 15. Switching Loss vs. Gate Resistance

Figure 17. Turn off Switching SOA Characteristics

Figure 14. Turn-off Characteristics vs. Collector Current

Figure 16. Switching Loss vs. Collector Current

Figure 18. Forward Characteristics

Typical Performance Characteristics

Figure 19. Transient Thermal Impedance of IGBT

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

