

Is Now Part of

ON Semiconductor®

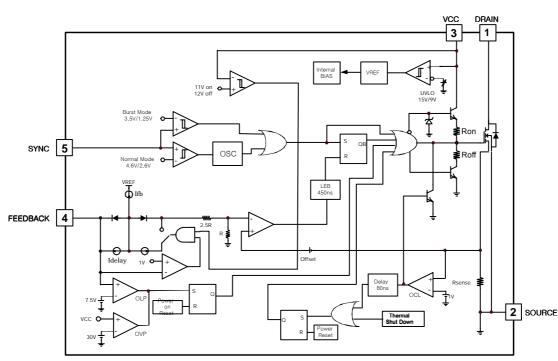
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

KA5Q0565RT Fairchild Power Switch(FPS)

Features


- Quasi Resonant Converter Controller
- Internal Burst Mode Controller for Stand-by Mode
- Pulse by Pulse Current Limiting
- Over Current Latch Protection
- Over Voltage Protection (Vcc: Min. 27V)
- Internal Thermal Shutdown Function
- Under Voltage Lockout
- Internal High Voltage Sense FET
- Auto-Restart Mode

Description

The Fairchild Power Switch(FPS) product family is specially designed for an off-line SMPS with minimal external components. The Fairchild Power Switch(FPS) consists of a high voltage power SenseFET and a current mode PWM IC. The integrated PWM controller includes the fixed oscillator, the under voltage lock out, the leading edge blanking, the optimized gate turn-on/turn-off driver, the thermal shut down protection, the over voltage protection, and the temperature compensated precision current sources for loop compensation and fault protection circuitry. Compared to a discrete MOSFET and a controller or a RCC switching converter solutions, a Fairchild Power Switch(FPS) can reduce the total number of components, design size, and weight, so it will improve efficiency, productivity, and system reliability. It has a basic platform well suited for cost-effective design in a quasi-resonant converter as a C-TV power supply.

Internal Block Diagram

Absolute Maximum Ratings

(Ta=25°C, unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-source Voltage	VDSS	650	V
Drain-Gate Voltage (R_{GS} =1 $M\Omega$)	Vdgr	650	V
Gate-Source (GND) Voltage	VGS	±30	V
Drain Current Pulsed ⁽²⁾	IDM	11	ADC
Single Pulsed Avalanch Current ⁽³⁾ (Energy ⁽²⁾)	IAS(EAS)	13(400)	A(mJ)
Continuous Drain Current (Tc = 25°C)	ID	2.8	ADC
Continuous Drain Current (T _C =100°C)	ID	1.7	ADC
Supply Voltage	Vcc	30	V
Input Voltage Range	VFB	-0.3 to Vcc	V
Total Power Dissipation	PD	38	W
Total Power Dissipation	Derating	0.3	W/°C
Operating Junction Temperature	TJ	+160	°C
Operating Ambient Temperature	TA	-25 to +85	°C
Storage Temperature Range	TSTG	-55 to +150	°C
Thermal Resistance	Rthjc	3.29	°C/W
ESD Capability, HBM Model (All pins)	-	2.0	kV
ESD Capability, Machine Model (All pins)	-	300	V

Notes:

1. Tj = 25°C to 150°C

2. Repetitive rating: Pulse width limited by maximum junction temperature

3. L = 30mH, V_DD = 50V, R_G = 25 Ω , starting T_j = 25°C

4. L = 13uH, starting T_j = $25^{\circ}C$

Electrical Characteristics (SFET Part)

(Ta=25°C unless otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BVDSS	V _{GS} = 0V, I _D = 50µA	650	-	-	V
Zero Gate Voltage Drain Current	IDSS	VDS = Max, Rating, VGS = 0V	-	-	200	μA
		V _{DS} = 0.8*Max., Rating V _{GS} = 0V, T _C = 85°C	-	-	300	μA
Static Drain-source on Resistance (Note)	RDS(ON)	V _{GS} = 10V, I _D = 2.3A	-	1.8	2.2	Ω
Input Capacitance	Ciss		-	780	-	
Output Capacitance	Coss	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz	-	90	-	pF
Reverse Transfer Capacitance	Crss		-	40	-	
Turn on Delay Time	td(on)	V _{DD} = 0.5BV _{DSS} , I _D = 7.0A (MOSFET switching time are essentially independent of operating	-	15	40	
Rise Time	tr		-	45	100	nS
Turn Off Delay Time	td(off)		-	60	130	113
Fall Time	tf	temperature)	-	40	90	
Total Gate Charge (Gate-Source+Gate-Drain)	Qg	V _{GS} = 10V, I _D = 7.0A, V _{DS} = 0.5B V _{DSS} (MOSFET	-	43	55	_
Gate-Source Charge	Qgs	Switching time are Essentially	-	4.0	-	nC
Gate-Drain (Miller) Charge	Qgd	independent of operating temperature)	-	7.3	-	

Note:

1. Pulse test : Pulse width $\leq 300 \mu S,\,duty \leq 2\%$

Electrical Characteristics (Continued)

(Ta=25°C unless otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit		
UVLO SECTION								
Start Threshold Voltage	VSTART	V _{FB} = GND	14	15	16	V		
Stop Threshold Voltage	VSTOP	V _{FB} = GND	8	9	10	V		
OSCILLATOR SECTION	OSCILLATOR SECTION							
Initial Frequency	Fosc	-	18	20	22	kHz		
Voltage Stability	FSTABLE	$12V \le Vcc \le 23V$	0	1	3	%		
Temperature Stability (Note2)	ΔFosc	-25°C ≤ Ta ≤ 85°C	0	±5	±10	%		
Maximum Duty Cycle	DMAX	-	92	95	98	%		
Minimum Duty Cycle	DMIN	-	-	-	0	%		
FEEDBACK SECTION								
Feedback Source Current	IFB	V _{FB} = GND	0.7	0.9	1.1	mA		
Shutdown Feedback Voltage	VSD	$V f b \ge 6.9 V$	6.9	7.5	8.1	V		
Shutdown Delay Current	IDELAY	VFB = 5V	4	5	6	μA		
PROTECTION SECTION								
Over Voltage Protection	VCCOVP	$V_{CC} \ge 26V$	27	30	33	V		
Over Current Latch Voltage (Note2)	Vocl	-	0.9	1.0	1.1	V		
Thermal Shutdown Temp.	TSD	-	140	160	-	°C		
SYNC SECTION								
Normal Sync High Threshold Voltage	VNSH	V _{CC} = 16V, Vfb = 5V	4.0	4.6	5.2	V		
Normal Sync Low Threshold Voltage	VNSL	V _{CC} = 16V, Vfb = 5V	2.3	2.6	2.9	V		
Burst Sync High Threshold Voltage	VBSH	V _{CC} = 10.5V, Vfb = 0V	3.2	3.6	4.0	V		
Burst Sync Low Threshold Voltage	VBSL	VCC = 10.5V, Vfb = 0V	1.1	1.3	1.5	V		

Note:

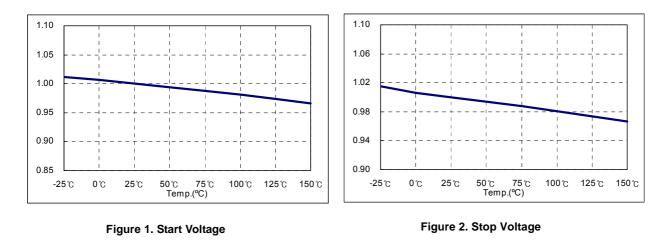
1. These parameters is the current flowing in the Control IC.

2. These parameters, although guaranteed, are tested in EDS(wafer test) process.

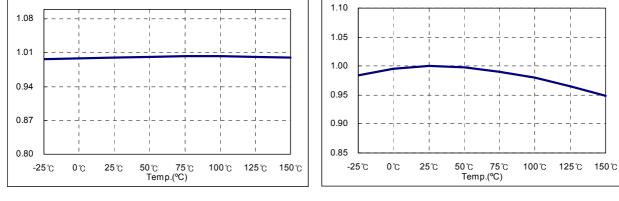
3. These parameters indicate Inductor Current.

Electrical Characteristics (Continued)

(Ta=25°C unless otherwise specified)


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
BURST MODE SECTION							
Burst Mode Low Threshold Voltage	VBURL	Vfb = 0V	10.4	11.0	11.6	V	
Burst Mode High Threshold Voltage	VBURH	Vfb = 0V	11.4	12.0	12.6	V	
Burst Mode Enable Feedback Voltage	VBEN	Vcc = 10.5V	0.7	1.0	1.3	V	
Burst Mode Peak Current Limit	IBU_PK	Vcc = 10.5V	0.65	0.85	1.1	А	
CURRENT LIMIT(SELF-PROTECTION)SECTION							
Peak Current Limit(Note3)	lрк	-	3.08	3.5	3.92	А	
TOTAL DEVICE SECTION							
Start Up Current	ISTART	Vfb = GND, V _{CC} = 14V	-	0.1	0.2	mA	
	IOP	Vfb = GND, V _{CC} = 16V					
Operating Supply Current (Note1)	IOP(MIN)	Vfb = GND, V _{CC} = 10V	-	10	18	mA	
	IOP(MAX)	Vfb = GND, V_{CC} = 28V					

Note:


1. These parameters is the current flowing in the Control IC.

2. These parameters, although guaranteed, are tested in EDS(wafer test) process.

3. These parameters indicate Inductor Current.

Typical Performance Characteristics

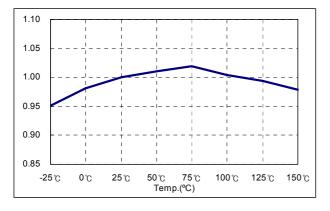


Figure 5. Initial Frequency

Figure 4. Operating Current

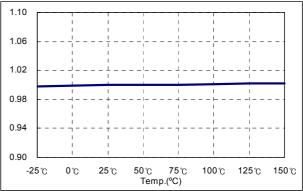
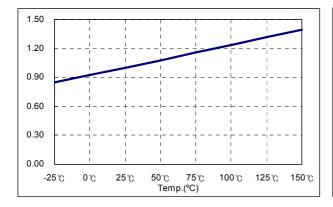


Figure 6. Maximum Duty


1.20

1.12

1.04

0.96

0.88

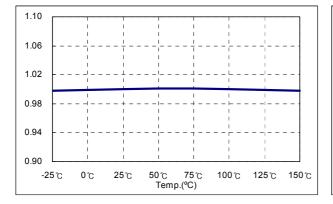
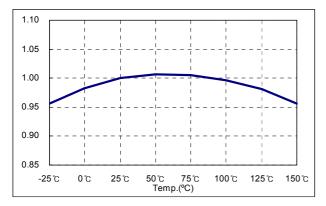
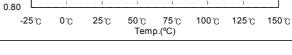




Figure 9. Over Voltage Protection

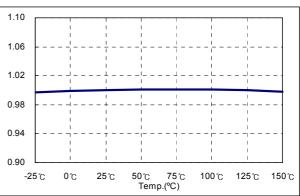
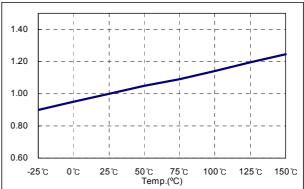
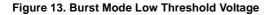
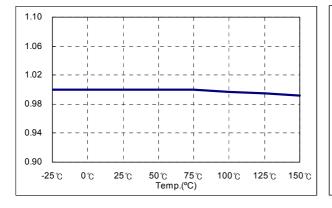
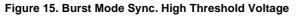
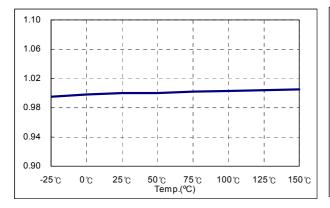


Figure 8. Feedback Source Current


Figure 12. Burst Mode Enable Feedback Voltage



Typical Performance Characteristics (Continued)

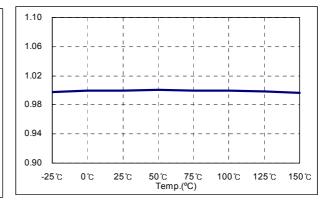
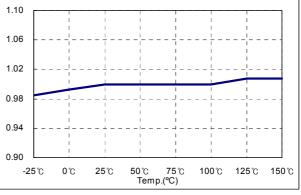



Figure 14. Burst Mode High Threshold Voltage

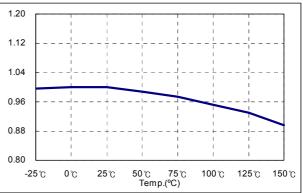
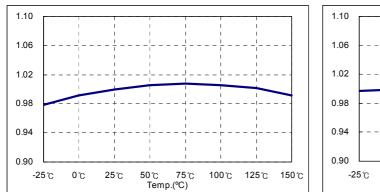



Figure 18. Primary Mode Gain

Typical Performance Characteristics (Continued)

1.10

1.06

1.02

0.98

0.94

0.90

-25℃

0°C

25℃

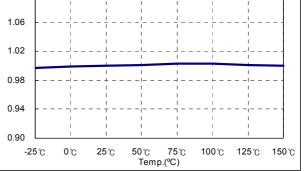
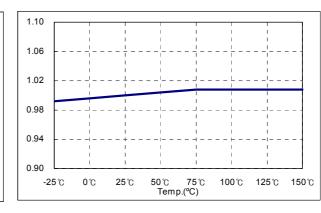



Figure 20. Burst Mode Peak Current Limit

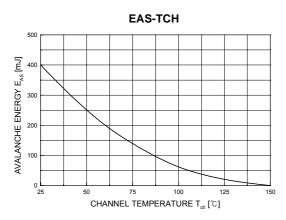

50℃ 75℃ Temp.(℃)

Figure 21. Normal Mode Sync. Low Threshold Voltage

Typical Performance Characteristics (MOSFET Part)

100*°*C

125℃ 150℃

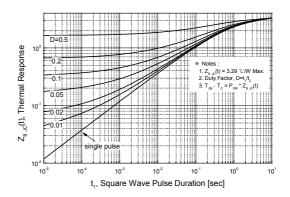
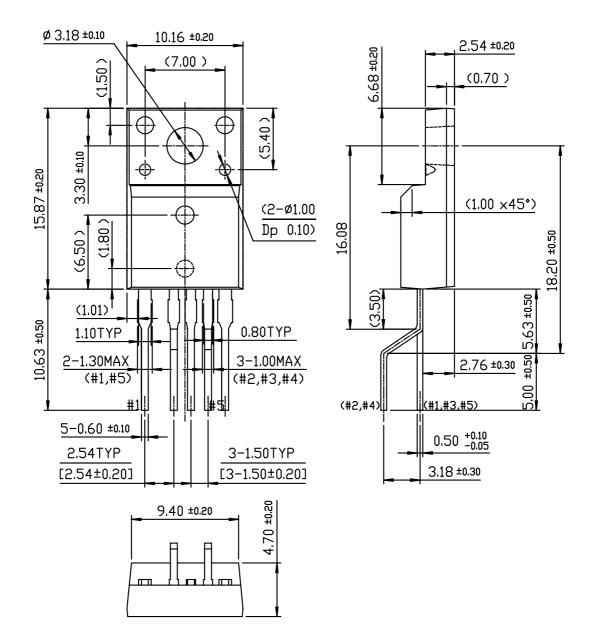



Figure 23. Transient Thermal Response Curve


T Part)

Package Dimensions

TO-220F-5L

TO-220F-5L(Forming)

Ordering Information

Product Number	Package	Operating Temp.
KA5Q0565RTTU	TO-220F-5L	-25°C to +85°C
KA5Q0565RTYDTU	TO-220F-5L(Forming)	-23 C 10 +63 C

TU : Non Forming Type YDTU : Forming Type

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC