DISTINCTIVE CHARACTERISTICS

Standard with Enhanced LED Illumination:

- Broad and even light diffusion
- Consistent backlighting
- Low energy consumption

Programmable LCD
Variety of LED Backlighting Colors
Rubber Dome
Epoxy Sealed Straight PC Terminals

RGB or bicolor red/green backlighting provides infinite color
 availability.
Programmable to display graphics, alphanumeric characters and animated sequences.
Integrated liquid crystal display provides wide viewing angle with high contrast and clarity.
Viewing area for switches $17.0 \mathrm{~mm} \times 13.0 \mathrm{~mm}$
(horizontal \times vertical) at 36×24 pixels;
Display viewing area $14.4 \mathrm{~mm} \times 11.8 \mathrm{~mm}$.
Dome gives crisp tactile feedback to positively indicate circuit transfer.

High reliability and long life of one million actuations minimum. Epoxy sealed terminals prevent entry of solder flux and other contaminants.

Optional accessories available to enhance panel design and simplify production process.

Actual Sizes

PART NUMBERS \& DESCRIPTIONS

Part Number		Switch Description	LCD Mode
IS15BBFP4RGB	SPST	LED Color	
	Momentary ON Gold Contacts Straight PC Terminals	Flack \& White	FSTN Positive

[^0]
DISTINCTIVE CHARACTERISTICS

Standard with Enhanced Illumination:

Programmable to display graphics, alphanumeric characters and animated sequences.

Standard SMARTDISPLAY ${ }^{\text {MM }}$ can be used alone or in conjunction with electromechanical switches.

Integrated liquid crystal display provides wide viewing angle with high contrast and clarity.

RGB LED provides numerous color variations.
Viewing area $14.4 \mathrm{~mm} \times 11.8 \mathrm{~mm}$ (horizontal \times vertical) at 36×24 pixels.

PART NUMBER \& DESCRIPTION

Part Number	Terminals	LCD Mode	LED Color
IS01BBFRGB	Straight PC	Black \& White FSTN Positive	* Red/Green/Blue

* Simultaneous illumination of LED achieves infinite colors.

CHARACTERISTICS OF DISPLAY

Viewing Area	$14.4 \mathrm{~mm} \times 11.8 \mathrm{~mm}$ (horizontal \times vertical)
Pixel Size	$0.371 \mathrm{~mm} \times 0.445 \mathrm{~mm}$ (horizontal \times vertical)
Backlight LED	RGB: red/green/blue

TYPICAL DISPLAY DIMENSIONS FOR RGB LED

Terminal numbers are not on the device.

Pixel Detail

BLOCK DIAGRAM \& PIN CONFIGURATIONS FOR RGB LEDS

ISO1BBFRGB
RGB LED Backlight Black and White LCD

(10) BL-LED $(+)$ (2) BL-LED (-)

Function

Power source for LCD drive
Cathode for green

Power source for logic circuit
Display serial data bit. Note: to map the display data, because of the difference between the number of internal shift register data (40) and the single line of LCD pixels (36), the first four bits of data shifted will be dummy bits.
Clock used by 40 -bit internal shift register of the switch, shiffing the display data bit presented at Din at falling edge.
Line data latch pulse will latch content of internal 40 -bit shift register at falling edge for one line of display. LP will also increment the display line by one.
Cathode for red
The marking signal for the first line data of LCD display. The first line of LCD will be selected by the falling edge of LP signal during the high level (FLM).

Anode for common
Display serial output. Can be used to connect to Din of the next SMARTDISPLAY. As a result, many SMARTDISPLAYS can be controlled with one clock and data signal.
Cathode for blue

Wide View LCD 36×24 Pushbuttons, Display \& Compacts SmartSwitch

Absolute Maximum Ratings (Temperature at $25^{\circ} \mathrm{C}$)

Items	Symbols	Ratings
Supply Voltage for Logics	V_{DD}	-0.3 V to +7.0 V
Supply Voltage for LCD	V_{LC}	-0.3 V to +12.0 V
Input Voltage	V_{1}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Voltage	V_{\circ}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

LCD SPECIFICATIONS

Characteristics of Display	
Display Operation Mode	FSTN positive
Display Condition	Transflective with built-in LED backlight
Viewing Angle	6 o'clock $^{1 / 24 \text { duty. } 1 / 5 \text { bias (built-in driving circuit) }}$
Driving Method	36×24 pixels (horizontal \times vertical)
Pixel Format	RGB: red/green/blue Bicolor: red/green
Backlight LED	

Recommended Operating Conditions (Temperature at $25^{\circ} \mathrm{C}$)

Items	Symbols	Minimum	Typical	Maximum
Supply Voltage for Logics	V_{DD}	3.0 V	-	5.5 V
Supply Voltage	V_{LC}	-	$* 7.3 \mathrm{~V}$	-
Input Voltage	V_{I}	0 V	-	V_{DD}
Driving Frequency	$\mathrm{f}_{\mathrm{FLM}}$	--	150 Hz	-
Clock Operation Frequency	$\mathrm{f}_{\mathrm{SCP}}$	--	-	8.0 MHz

* LCD voltage $\left(\mathrm{V}_{\mathrm{LC}}\right)$ level depends on refreshing frequency and temperature. The optimal V_{LC} can differ slightly from the stated typical value.

DC Characteristics of LCD Drive (Temperature at $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$)

Items	Symbols	Test Conditions	Minimum	Typical	Maximum	Unit
High Level Input Voltage	V_{1}		$0.7 \mathrm{~V}_{\text {D }}$		$V_{D D}$	V
Low Level Input Voltage	V_{11}		0		$0.3 V_{D D}$	V
High Level Input Leakage Current	$\mathrm{I}_{\text {LIH }}$	$V_{1}=V_{D D}$			10	$\mu \mathrm{A}$
Low Level Input Leakage Current	$\mathrm{I}_{\text {LIL }}$	$\mathrm{V}_{1}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
High Level Output Voltage	V_{OH}	$\mathrm{I}_{\text {OH }}=-500 \mu \mathrm{~A}$	$V_{\text {DD }}-0.5$			V
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.5	V
High Level Output Leakage Current	$\mathrm{I}_{\mathrm{OOH}}$	$V_{O}=V_{D D}$			10	$\mu \mathrm{A}$
Low Level Output Leakage Current	$\mathrm{I}_{\text {LOL }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
Supply Current	$I_{\text {D }}$	$\mathrm{f}_{\text {SCP }}=1.0 \mathrm{MHz}$			500	$\mu \mathrm{A}$
LCD Drive Current	I_{LC}	$\mathrm{f}_{\mathrm{LP}}=2.4 \mathrm{kHz} \mathrm{V}_{\mathrm{LC}}=7.3 \mathrm{~V}$		500	2,000	$\mu \mathrm{A}$

SmartSwitch

Timing Characteristics of LCD Drive IC
(Temperature at $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$)

Items	Symbols	Minimum	Maximum
Clock Operation Frequency	$\mathrm{f}_{\mathrm{SCP}}$		8.0 MHz
Latch Pulse Frequency	f_{LP}		50 kHz
Clock High Level Pulse Width	$\mathrm{t}_{\mathrm{CWH}}$	50 ns	
Clock Low Level Pulse Width	$\mathrm{t}_{\mathrm{CWL}}$	50 ns	
Data Setup Time	$\mathrm{t}_{\mathrm{DSD}}$	45 ns	
Data Hold Time	$\mathrm{t}_{\mathrm{DHD}}$	50 ns	
Data Output Delay Time	$\mathrm{t}_{\mathrm{PDO}}$		25 ns
Latch Setup Time	$\mathrm{t}_{\mathrm{DSL}}$	50 ns	
Latch Hold Time	$\mathrm{f}_{\mathrm{DHL}}$	50 ns	
Latch High Level Width	$\mathrm{t}_{\mathrm{LWH}}$	50 ns	
FLM Setup Time	$\mathrm{t}_{\mathrm{DSF}}$	50 ns	
FLM Hold Time	$\mathrm{f}_{\mathrm{DHF}}$	50 ns	
SCP, LP Rise $/$ Fall Time	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$		15 ns

Timing Diagram
*1 Last data on first line
*2 Beginning data on second line
*3 Location of LP signal on first line

LED CHARACTERISTICS

Typical Electrical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Backlight Color	Symbols	Red	Green	Blue	Red/Green	Unit
Forward Current	I_{F}	10	8.5	8.0	$15 / 15$	mA

ABSOLUTE MAXIMUM FOR LEDS

Electrical Characteristics (Temperature at $25^{\circ} \mathrm{C}$)

Backlight Color	Symbols	Red	Green	Blue	Red/Green	Unit
Forward Current	I_{F}	20	20	20	20	mA
Forward Voltage	V_{F}	2.0 $\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$	2.8 $\left(I_{\mathrm{F}}=8.5 \mathrm{~mA}\right)$	2.8 $\left(I_{\mathrm{F}}=8.0 \mathrm{~mA}\right)$	$1.9 / 1.9$	V
Reverse Voltage	V_{R}	4.0	4.0	4.0	4.0	V
Current Reduction Rate Above $\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\Delta \mathrm{I}_{\mathrm{F}}(\mathrm{DC})$	-0.33	-0.33	-0.33	-0.26	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
$*$ Power Dissipation (LED Overall 115 mW$)$	P_{D}	40	60	60	130 maximum	mW

*For uniform light emission, Power Dissipation should not exceed the Absolute Maximum Rating, and the Forward Current should not exceed the derated Absolute Forward Current.

PRECAUTIONS FOR HANDLING \& STORAGE OF LCD 36×24 DEVICES

Handling

1. The IS Series devices are electrostatic sensitive.
2. Limit operating force to keytop to 100.0 N maximum, as excessive pressure may damage the LCD device.
3. The IS series devices are not process sealed.
4. If the LCD is accidentally broken, avoid contact with the liquid and wash off any liquid spills to the skin or clothing.
5. Clean cap surface with dry cloth. If further cleaning is needed, wipe with dampened cloth using neutral cleanser and dry with clean cloth. Do not use organic solvent.
6. Recommended soldering time and temperature limits:

Do not exceed $70^{\circ} \mathrm{C}$ at the LCD level.
Wave Soldering: see Profile B in the Supplement section.
Manual Soldering for Switch: see Profile A in the Supplement section.
Manual Soldering for Display: see Profile B in the Supplement section.
7. Recommendation for backlight color uniformity: Use constant current driver. For current limiting resistor method, the power source should be at least twice the backlight LED forward voltage.
8. The VLC voltage should not be applied before logic voltage. If VLC voltage is present before logic voltage, it may cause the driver logic to freeze and damage the LCD, and the driver logic may become damaged.
9. Backlight Forward Current should not exceed the derated Absolute Maximum Forward Current based on the temperature.
10. Excessive images may result after the same image is emitted continuously for an extended period of time.

Storage

1. Store in original container and away from direct sunlight.
2. Keep away from static electricity.
3. Avoid extreme temperatures, high humidity, gaseous substances, and all forms of chemical contamination.

[^0]: * Simultaneous illumination of LEDs achieves infinite colors.

