

Is Now Part of

ON Semiconductor®

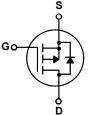
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FQB34P10TM_F085 100V P-Channel MOSFET

General Description


These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.

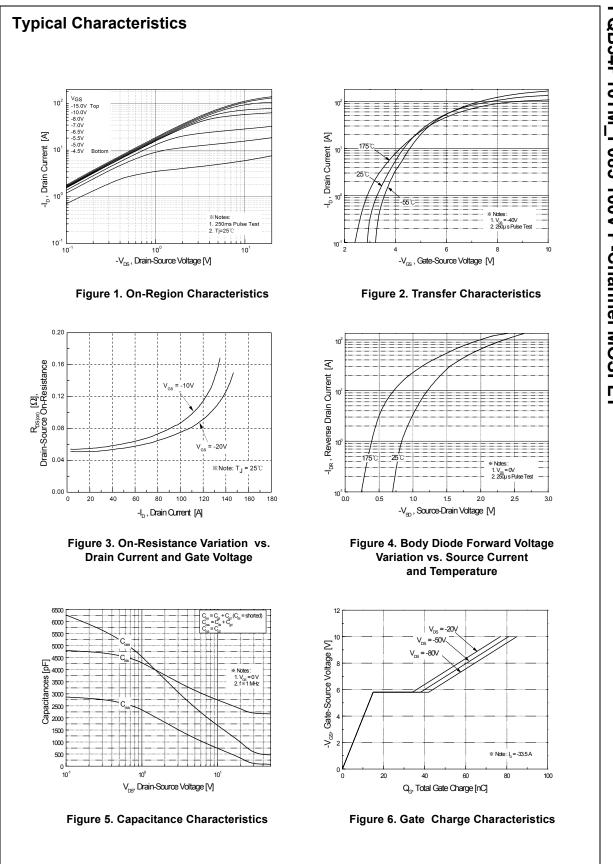
Features

- -33.5A, -100V, $R_{DS(on)} = 0.06\Omega @V_{GS} = -10 V$
- Low gate charge (typical 85 nC)
- Low Crss (typical 170 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating
- Qualified to AEC Q101
- RoHS Compliant

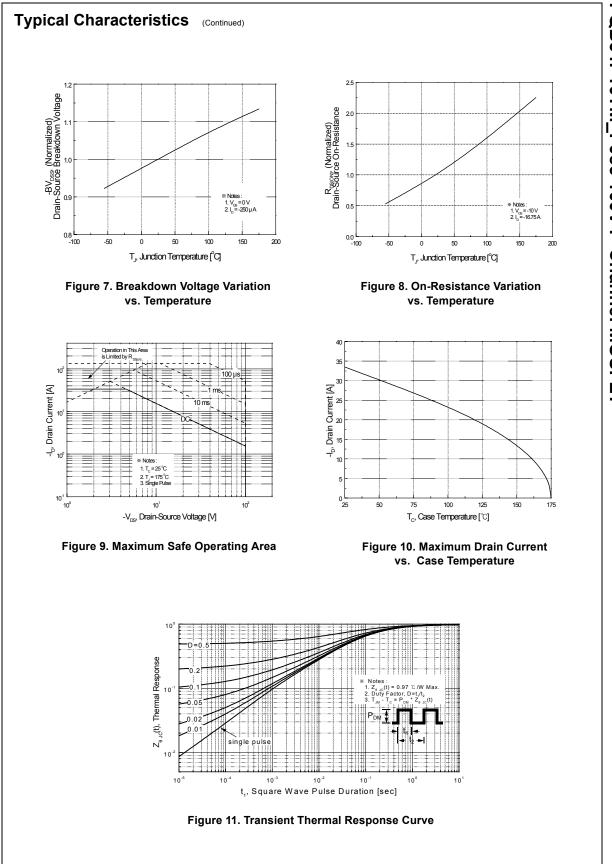
Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		FQB34P10TM_F085	Units
V _{DSS}	Drain-Source Voltage		-100	V
I _D	Drain Current - Continuous (T _C = 25°C)		-33.5	А
	- Continuous (T _C = 100°C)		-23.5	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-134	А
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	2200	mJ
I _{AR}	Avalanche Current	(Note 1)	-33.5	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	15.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-6.0	V/ns
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.75	W
2	Power Dissipation $(T_C = 25^{\circ}C)$		155	W
	- Derate above 25°C		1.03	W/°C
T _J , T _{STG}	Operating and Storage Temperature Ra	nge	-55 to +175	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

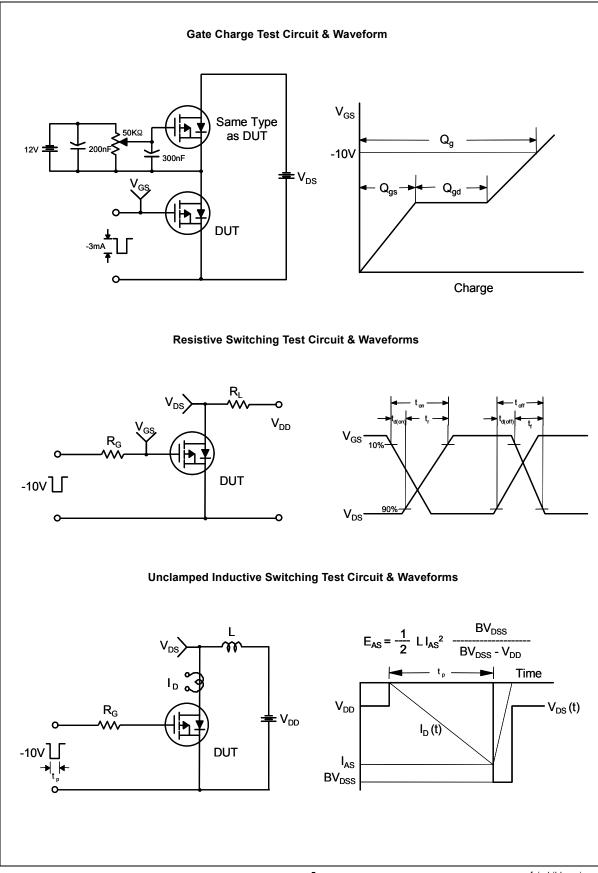
Thermal Characteristics

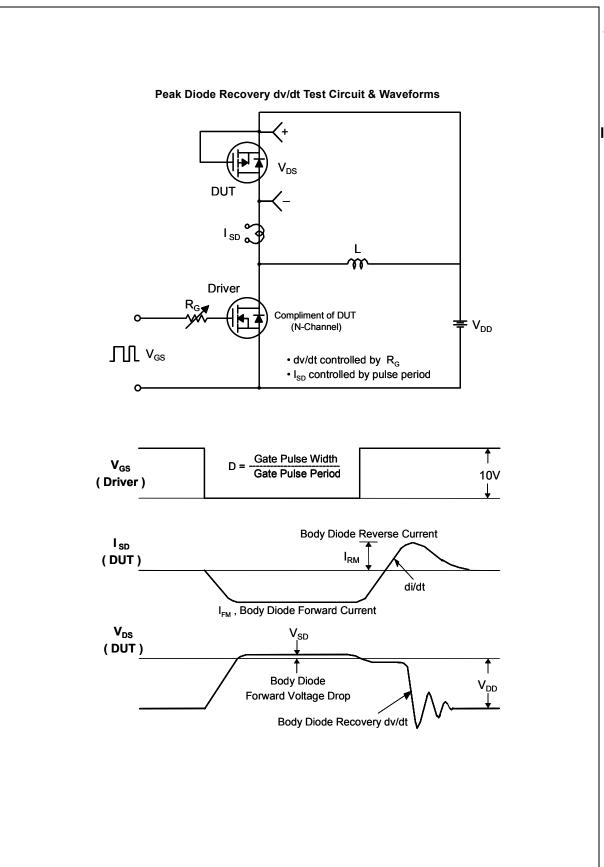

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.97	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

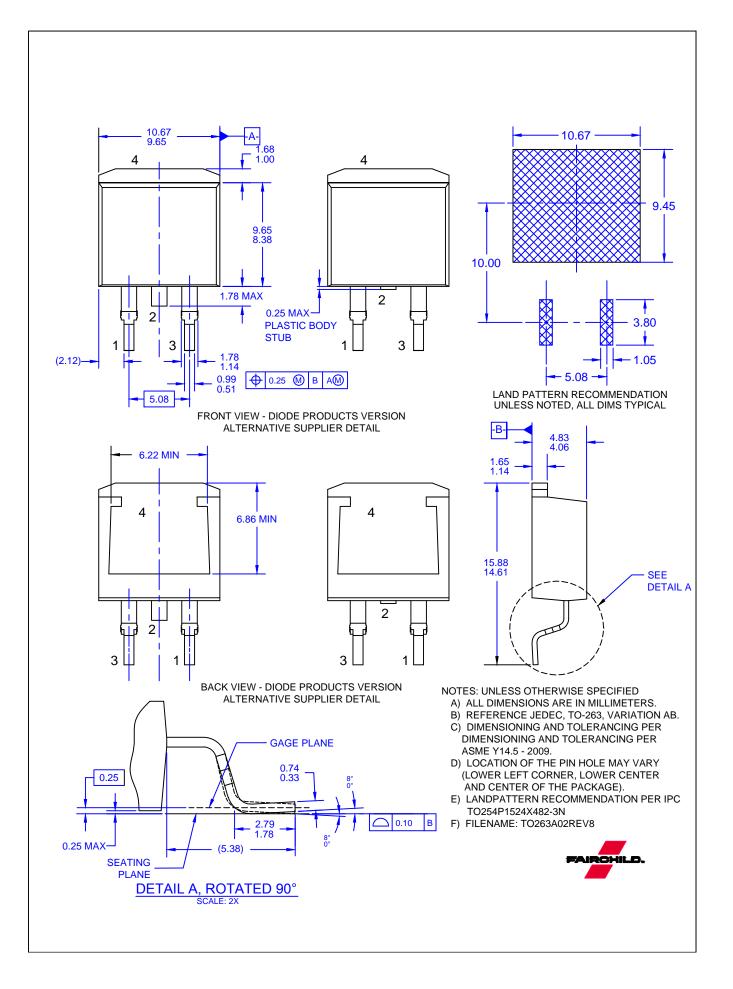
FQB34P10TM_F085 100V P-Channel MOSFET


March 2016 QFET[™]

FREE


teristics ain-Source Breakdown Voltage eakdown Voltage Temperature efficient to Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source -Resistance	$\begin{split} V_{GS} &= 0 \ V, \ I_D = -250 \ \mu A \\ I_D &= -250 \ \mu A, \ Referenced \ to \ 25^\circ C \\ V_{DS} &= -100 \ V, \ V_{GS} &= 0 \ V \\ V_{DS} &= -80 \ V, \ T_C &= 150^\circ C \\ V_{GS} &= -25 \ V, \ V_{DS} &= 0 \ V \\ V_{GS} &= 25 \ V, \ V_{DS} &= 0 \ V \\ \end{split}$	-100 -2.0	 -0.1 	 -1 -10 -100 100	V V/°C μΑ μΑ nA
ain-Source Breakdown Voltage eakdown Voltage Temperature efficient to Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -100 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -80 \ \text{V}, \ T_{C} = 150^{\circ}\text{C}$ $V_{GS} = -25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = 25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$		-0.1 	 -1 -10 -100	V/°C μA μA nA
eakdown Voltage Temperature efficient To Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -100 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -80 \ \text{V}, \ T_{C} = 150^{\circ}\text{C}$ $V_{GS} = -25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = 25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$			-10 -100	μA μA nA
te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$V_{DS} = -80 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$ $V_{GS} = -25 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$ $V_{GS} = 25 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-10 -100	μA nA
te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$V_{GS} = -25 V, V_{DS} = 0 V$ $V_{GS} = 25 V, V_{DS} = 0 V$			-100	nA
te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	V _{GS} = 25 V, V _{DS} = 0 V				
teristics te Threshold Voltage tic Drain-Source				100	nA
te Threshold Voltage tic Drain-Source	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-2 0			
te Threshold Voltage tic Drain-Source	V_{DS} = V_{GS} , I_D = -250 μ A	-2 0			
tic Drain-Source	D3 03, D - 1			-4.0	V
	Statia Drain Source			-	
	V _{GS} = -10 V, I _D = -16.75 A		0.049	0.06	Ω
ward Transconductance	V_{DS} = -40 V, I_{D} = -16.75 A (Note 4)		23		S
haraatariatioa					
			2240	2010	۳E
			-		pF pF
	f = 1.0 MHz				pr pF
n-On Delay Time	V _{DD} = -50 V, I _D = -33.5 A,		25	60	ns
n-On Rise Time	55 5		250	510	ns
n-Off Delay Time	(Note 4 E)		160	330	ns
	(NOLE 4, 5)		-		ns
al Gate Charge	V _{DS} = -80 V, I _D = -33.5 A,		85	110	nC
•	V _{GS} = -10 V				nC
te-Drain Charge	(Note 4, 5)		45		nC
ce Diode Characteristics a	nd Maximum Ratings				
	•			-33.5	А
ximum Pulsed Drain-Source Diode F	orward Current			-134	А
ximum Pulsed Drain-Source Diode F ain-Source Diode Forward Voltage	Forward Current V_{GS} = 0 V, I _S = -33.5 A			-134 -4.0	A V
			 160		
	n-On Rise Time n-Off Delay Time n-Off Fall Time al Gate Charge te-Source Charge te-Drain Charge	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHztput Capacitancef = 1.0 MHz Characteristics $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ R_G = 25 Ω n-On Delay Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ R_G = 25 Ω n-Off Fall Time $(Note 4, 5)$ al Gate Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHztput Capacitancef = 1.0 MHzCharacteristicsn-On Delay Time n-On Rise Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ $R_G = 25 \Omega$ n-Off Delay Time n-Off Fall Time al Gate Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ te-Drain Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ te-Drain Charge $V_{OS} = -10 \text{ V}$ te Diode Characteristics and Maximum Ratings	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 2240 tput Capacitance f = 1.0 MHz 730 verse Transfer Capacitance 170 Characteristics 25 m n-On Delay Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 25 n-On Rise Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 250 n-Off Delay Time $(Note 4, 5)$ 160 n-Off Fall Time $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ 85 te-Source Charge $V_{GS} = -10 \text{ V}$ 15 te-Drain Charge (Note 4, 5) 45	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 2240 2910 tput Capacitance f = 1.0 MHz 730 950 verse Transfer Capacitance r = 1.0 MHz 170 220 Characteristics n-On Delay Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 25 60 n-On Rise Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 250 510 n-Off Delay Time $R_G = 25 \Omega$ (Note 4, 5) 210 430 al Gate Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ 85 110 te-Source Charge $V_{GS} = -10 \text{ V}$ 45 te-Drain Charge (Note 4, 5) 45


FQB34P10TM_F085 100V P-Channel MOSFET


FQB34P10TM_F085 100V P-Channel MOSFET

FQB34P10TM_F085 Rev. 1.1

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC