Vishay Semiconductors

www.vishay.com

AAP Gen 7 (TO-240AA)

PRIMARY CHARACTERISTICS			
I _{F(AV)}	110 A		
V _R	30 V		
Package	AAP Gen 7 (TO-240AA)		
Circuit configuration	Two diodes doubler circuit		

MECHANICAL DESCRIPTION

The AAP Gen 7, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- 150 °C T_J operation
- Low forward voltage drop
- High frequency operation
- Low thermal resistance
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION / APPLICATIONS

The VS-VSKDS220.. Schottky rectifier doubler has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature.

Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	110	А		
V _{RRM}		30	V		
I _{FSM}	t _p = 5 μs sine	18 000	А		
V _F	110 A _{pk} , T _J = 125 °C	0.57	V		
TJ	Range	-55 to +150	C°		

VOLTAGE RATINGS			
PARAMETER	SYMBOL	VS-VSKDS220/030	UNITS
Maximum DC reverse voltage	V _R	30	V
Maximum working peak reverse voltage	V _{RWM}	50	v

Revision: 03-May-17

Vishay Semiconductors

ABSOLUTE MAXIMUM RATIN	GS				
PARAMETER	SYMBOL	TEST CONDI	TIONS	VALUES	UNITS
Maximum average forward current	I _{F(AV)}	50 % duty cycle at T_{C} = 110 °C	, rectangular waveform	110	
Maximum peak one cycle		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	18 000	А
non-repetitive surge current	IFSM	10 ms sine or 6 ms rect. pulse	rated V _{RRM} applied	2000	
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 15 \text{ A}, L = 1 \text{ mH}$ 9		99	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zer Frequency limited by T_J maxim		22	А

ELECTRICAL SPECIFICATION	IS				
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
	$V_{FM} = \begin{array}{c} 110 \text{ A} \\ \hline 220 \text{ A} \\ \hline 110 \text{ A} \\ \hline 110 \text{ A} \\ \hline T_{J} = 25 \text{ °C} \\ \hline T_{J} = 125 \text{ °C} \\ \hline \end{array}$	110 A	T _J = 25 °C	0.59	v
Maximum forward voltage drop		220 A		0.78	
Maximum forward voltage drop		T 405.00	0.57	v	
		220 A	1j = 125 C	0.82	
Maximum reverse lookage averant	rse leakage current	T _J = 25 °C	V _R = Rated V _R	10	mA
Maximum reverse leakage current		T _J = 125 °C		650	mA
Maximum junction capacitance	CT	$V_{R} = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz), 25 °C		7400	pF
Typical series inductance	L _S	Measured lead to lead 5 mm from package body		7.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R 100		10 000	V/µs
Maximum RMS insulation voltage	V _{INS}	50 Hz 3000 (1 min) 3600 (1 s)		V	

THERMAL - MECHAN	CAL SPE	CIFICATI	ONS		
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		-55 to +150	°C
Maximum thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.52	°C/W
Typical thermal resistance, case to heatsink per module		R _{thCS}		0.1	0/10
Approvimato weight				75	g
Approximate weight				2.7	oz.
Mounting torque ± 10 %	to heatsink		A mounting compound is recommended and the torque should be rechecked after a period of 3 h to allow for the	4	Nm
	busbar		spread of the compound.		
Case style			JEDEC®	TO-240AA co	mpatible

Vishay Semiconductors

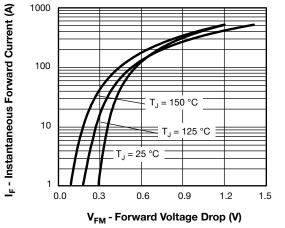
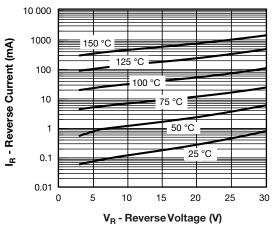
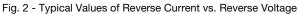




Fig. 1 - Maximum Forward Voltage Drop Characteristics

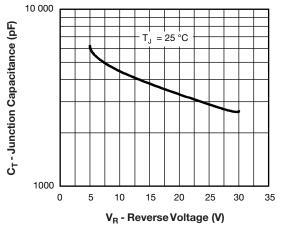
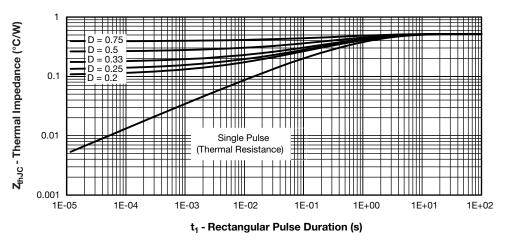
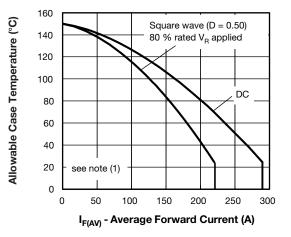
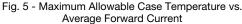
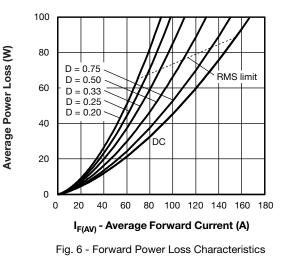


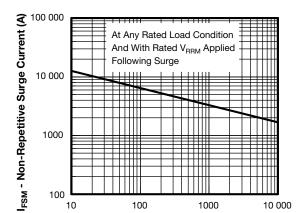
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage




Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics


 Revision: 03-May-17
 3
 Document Number: 94639


 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



Vishay Semiconductors

t_p - Square Wave Pulse Duration (μs)

Fig. 7 - Maximum Non-Repetitive Surge Current

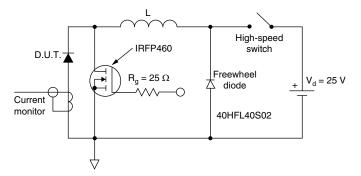
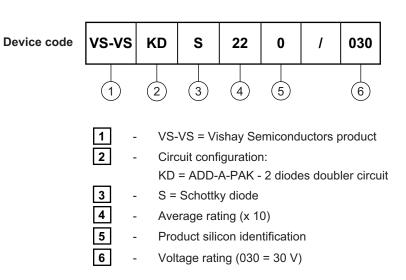


Fig. 8 - Unclamped Inductive Test Circuit

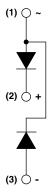
Note

- ⁽¹⁾ Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC}$;
 - $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 03-May-17

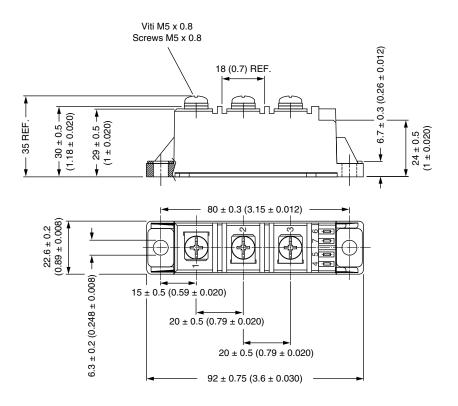

4

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


Vishay Semiconductors

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION


	ENTS
Dimensions	www.vishay.com/doc?95369

Vishay Semiconductors

ADD-A-PAK Generation VII - Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.