
Introducing the Adafruit WICED Feather WiFi
Created by Kevin Townsend

Last updated on 2018-08-22 03:52:45 PM UTC

2
11
15
15
16

17
18

19
20
21
21
24
24
25
25

27
27
28
29

31
31
32
32

33
34
34
34
35
36

36
37

37
38

38

39
39
39

39
40

40
42
42

Guide Contents

Guide Contents
Overview
Board Layout
Pin Multiplexing

Accessing Pins in Software

Power Config
LIPO Cell Power Monitoring (A1)

16 Mbit (2MByte) SPI Flash
PWM Outputs
Assembly
Header Options!
Soldering in Plain Headers

Prepare the header strip:
Add the breakout board:
And Solder!

Soldering on Female Header
Tape In Place
Flip & Tack Solder
And Solder!

Get the WICED BSP
Adding Adafruit Board Support

Add the Adafruit BSP List
Add the Adafruit WICED BSP

Upgrading From Earlier WICED BSP Releases (<0.6.0)
Windows Setup
Install Adafruit Windows Drivers
Install libusb 0.1 Runtime
Install Python 2.7

Testing the Python Installation

Install Python Tools
Testing the Installation

Optional: Install AdaLink
Setup Problems

I can get my device in DFU mode (fast blinky on the red LED), but the two USB CDC (COM) ports never
enumerate. I have the USB drivers installed, though. What's wrong?

OS X Setup
Install dfu-util

Testing the Installation

Install Python Tools
Testing the Installation

Optional: Install AdaLink
Linux Setup
UDEV Setup

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 2 of 202

42
43
43

44
44

45
45
46
46
46
47
49
50
52
52
52
52
53
53
53
54
54

54
54
54

55
56
56
56
56
56
56
56
57
57
58
58
59
60
60
60
60

60
60

Install dfu-util
Building dfu-util From Source (Ubuntu 14.04 etc.)
Testing the Installation

Install Python Tools (BSP <= 0.6.2)
Testing the Installation

Optional: Install AdaLink
External Resources
Arduino IDE Setup
Board Selection
Setting the 'Section'
Selecting the Serial Port
Optional: Updating the Bootloader
Compiling your Sketch
System Architecture
WICED WiFi + RTOS + SDEP = FeatherLib
Arduino User Code
Inter Process Communication (SDEP)
Flash Memory Layout

User Code (256KB + 20KB SRAM)
Feather Lib (704 KB + 108KB SRAM)
Config Data (32KB)
USB DFU Bootloader (32KB)

USB Setup
DFU Mode (Fast Blinky)
Normal Operating Mode (User Code)

Flash Updates
WICED Feather API
AdafruitFeather
AdafruitTCP
AdafruitUDP
AdafruitHTTP
AdafruitMQTT
AdafruitAIO
AdafruitSDEP
Client API
AdafruitFeather
AdafruitFeather API
Firmware Version Management

char const* bootloaderVersion (void)
char const* sdkVersion (void)
char const* firmwareVersion (void)
char const* arduinoVersion (void)

Scanning
int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 3 of 202

61
61
61
61
61
62
62
62

62
62
62
62
62
63
63
63
63
63
63
64
64
64

64
64
64

65
65
65

65
65

65
66
66

67
67
67
68
68
68

68
68
69
69

70
70
70
70
70

Connecting
bool connect (void)
bool connect (const char *ssid)
bool connect (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
bool begin (void)
bool begin (const char *ssid)
bool begin (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
void disconnect (void)

Network and Connection Details
bool connected (void);
uint8_t* macAddress (uint8_t *mac);
uint32_t localIP (void);
uint32_t subnetMask (void);
uint32_t gatewayIP (void);
char* SSID (void);
int32_t RSSI (void);
int32_t encryptionType (void);
uint8_t* BSSID (uint8_t* bssid);
DNS Lookup
IPAddress hostByName (const char* hostname)
bool hostByName (const char* hostname, IPAddress& result)
bool hostByName (const String &hostname, IPAddress& result)

Ping
uint32_t ping (char const* host)
uint32_t ping (IPAddress ip)

Factory Reset
void factoryReset (void)
void nvmReset (void)

Hardware Random Number Generator
bool randomNumber (uint32_t* random32bit)

Real Time Clock
bool getISO8601Time (iso8601_time_t* iso8601_time)
uint32_t getUtcTime (void)

TLS Root Certificate Management
Default Root Certificates
bool useDefaultRootCA (bool enabled)
bool initRootCA (void)
bool addRootCA (uint8_t const* root_ca, uint16_t len)
bool clearRootCA (void)

Print Helpers
void printVersions (Print& p = Serial)
void printNetwork (Print& p = Serial)
void printEncryption (int32_t enc, Print& p = Serial)

AdafruitFeather: Profiles
Connecting via Profiles
Profiles API

bool saveConnectedProfile (void)
bool addProfile (char* ssid)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 4 of 202

71
71
72
72
72

73
73
73
74

74
74
74
75

75

75
76

76
76
76
76
77
77
77

77
77
78
78
78
78
78
79

79
79
79
79
80

83
83
83
83
83
83
83
84

84
87
87
87

bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type)
bool removeProfile (char* ssid)
void clearProfiles (void)
char* profileSSID (uint8_t pos);
int32_t profileEncryptionType (uint8_t pos);

AdafruitTCP
TCP Socket API
Packet Buffering

void usePacketBuffering (bool enable)

TLS/SSL Certificate Verification
Verifying Certificates with the WICED Feather (Safer)
Ignoring Certificate Verification (Easier)

Default Root Certificates

void tlsRequireVerification (bool required)

Socket Handler Functions
void getHandle (void)

Client API
int connect (IPAddress ip, uint16_t port)
int connect (const char * host, uint16_t port)
int connectSSL (IPAddress ip, uint16_t port)
int connectSSL (const char* host, uint16_t port)
uint8_t connected (void)
void stop (void)

Stream API
int read (void)
int read (uint8_t * buf, size_t size)
size_t write (uint8_t data)
size_t write (const uint8_t *content, size_t len)
int available (void)
int peek (void)
void flush (void)

Callback API
void setReceivedCallback (tcpcallback_t fp)
void setDisconnectCallback (tcpcallback_t fp)
Callback Function Signatures
Example: Callback Based HTTP Request

AdafruitTCPServer
Constructor
Functions

bool begin (void)
AdafruitTCP accept (void)
AdafruitTCP available (void)
void stop (void)
void setConnectCallback (tcpserver_callback_t fp)

Example
AdafruitUDP
UDP Socket API
UDP API

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 5 of 202

87
87
88
88
88
88
88
89

89
89
89
90
90

90
90
90

91
91

91
91

94
94
94
94
94

94
95
95

95
95
95

96
100
100
100
101
101
101
102
102
103

104
104

109
109
109
110
110

uint8_t begin (uint16_t port)
void stop (void)
int beginPacket (IPAddress ip, uint16_t port)
int beginPacket (const char *host, uint16_t port)
int endPacket (void)
int parsePacket (void)
IPAddress remoteIP (void)
uint16_t remotePort (void)

Stream API
int read (void)
int read (unsigned char* buffer, size_t len) int read (char* buffer, size_t len)
int peek (void)
int available (void)

void flush (void)
size_t write (uint8_t byte)
size_t write (const uint8_t *buffer, size_t size)

Callback Handlers
void setReceivedCallback (udpcallback_t fp)

Examples
UDP Echo Server

AdafruitHTTP
AdafruitHTTP API
HTTP Headers

bool addHeader (const char* name, const char* value)
bool clearHeaders (void)

HTTP GET Requests
bool get (char const* url)
bool get (char const* host, char const* url)

HTTP POST Requests
bool post (char const* url, char const* encoded_data)
bool post (char const* host, char const* url, char const* encoded_data)

HTTP GET Example
AdafruitHTTPServer
AdafruitHTTPServer API

Constructor
Adding Pages

1. HTTPPageRedirect Records (Page Redirection Entries)
2. HTTPPage Records (Standard Pages)
Converting Static Content (HTTPResources)
Implementing Dynamic Page Handlers
Registering the Pages

Starting/Stopping the HTTP Server
Complete Example

AdafruitMQTT
Constructors
Functions
Connection Management

bool connected(void)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 6 of 202

111

111

112

112
113

113

113
114
114
115

115

115

116

116
116

117
117
122
122
122
122

123
123
124
124

124
125
130
130
130

130
131
131

132

132
132
133

133
138
138

bool connect (IPAddress ip, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT);
bool connect (const char* host, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT);
bool connectSSL (IPAddress ip, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)
bool connectSSL (const char* host, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)
bool disconnect (void)

Messaging
bool publish (UTF8String topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, bool
retained = false);
bool subscribe (const char* topicFilter, uint8_t qos, messageHandler mh);

Subscribe Callback Handler(s)
Callback Handler Parameters

bool unsubscribe(const char* topicFilter);

Last Will
void will (const char* topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, uint8_t
retained = 0);

Client ID
void clientID(const char* client)

Disconnect Callback
AdafruitMQTT Example
AdafruitMQTTTopic
Constructor
Functions

void retain (bool on)

Subscribe Callbacks
bool subscribe (messageHandler_t mh)
bool unsubscribe (void)
bool subscribed (void)

Publishing Data via 'Print'
Example
AdafruitAIO
Constructor

Functions

Connecting
bool connect (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
bool connectSSL (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

Feed Management
bool updateFeed (const char* feed, UTF8String message, uint8_t qos=MQTT_QOS_AT_MOST_ONCE, bool
retain=true)
bool followFeed (const char* feed, uint8_t qos, messageHandler_t mh)
bool unfollowFeed (const char* feed)

Example
AdafruitAIOFeed
Constructor

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 7 of 202

138
138
139
139

139
143
143
143
144
145
145
146

146
150
150
150
150
150
151

152
152

154
154
154
154
154

154
156
156
156
156
157

158
158
159
160
162
162
162
162
163
163
164
164
166

Functions
bool follow (feedHandler_t fp)
bool unfollow (void)
bool followed (void)

Example
AdafruitTwitter
1. Creating a WICED Twitter Application

Enter the Application Details
Set the Application Permissions
Manage the Access Keys
Copy the Appropriate Key Data
Create your Access Token

2. Using the AdafruitTwitter Class
AdafruitSDEP
AdafruitSDEP API
Constructor
Functions

sdep
Examples

sdep_n
Examples

Error Handling Functions
err_t errno (void)
char const* errstr(void)
char const* cmdstr (uint16_t cmd_id)
void err_actions (bool print, bool halt)

Error Handling Example
Client
Adapting Client Examples

1. Update Header Includes
2. Change 'WiFi.*' References to 'Feather.*'
3. Change WiFiUDP and WiFiTCP Class Types

Constants
wl_enc_type_t
err_t
wl_ap_info_t
Python Tools
pyresource.py (Convert static files to C headers)
pycert.py (Python TLS Certificate Converter)
feather_dfu.py (Python USB DFU Utility)
pyresource.py
Usage
HTTPResource Records
HTTPResource Collection: resources.h
pycert.py

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 8 of 202

166
166
166

167
167
167

168
168
168
168
168
169
169
169
169

171
173
173
173
173
173
174

174
174
175

175
176
176
176
176
176
178
178
178
178
180
180
180
180
182
182
182
182
184

Downloading the Root Certificate for a Domain
Parameters
Usage

Converting PEM Files
Parameters
Usage

feather_dfu.py
Commands

arduino_upgrade
featherlib_upgrade
enter_dfu
info
factory_reset
nvm_reset
reboot

SDEP Commands
Generic
Reset (0x0001)
Factory Reset (0x0002)
Enter DFU Mode (0x0003)
System Information (0x0004)

Parameter ID

NVM Reset (0x0005)
Error String (0x0006)

Error ID

Generate Random Number (0x0101)
Examples
Accessing the Examples (Arduino 1.6.5)
Accessing the Examples (Arduino >= 1.6.8)
Example Folders
Making Modifications to the Examples
ScanNetworks
Setup
Compile and Flash
Testing the Sketch
Ping
Setup
Compile and Flash
Testing the Sketch
GetHostByName
Setup
Compile and Flash
Testing the Sketch
HttpGetPolling

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 9 of 202

184
184
184
186
186
186
186
188
188
188
188
190
190
190
190
191
193
193
193
193
194
194

194
195
196
196
196

196

196

197
198
199

199

201
201
201
201

Setup
Compile and Flash
Testing the Sketch
HttpGetCallback
Setup
Compile and Flash
Testing the Sketch
HTTPSLargeData
Setup
Compile and Flash
Testing the Sketch
Throughput
Setup
Running Netcat
Compile and Flash
Testing the Sketch
FeatherOLED
Setup

Setting the Access Point
Enabling LIPO Battery Monitoring (Optional)
Enabling the TSL2561 Luminosity Sensor (Optional)
Enabling MQTT to Adafruit IO (Optional)

Compile and Flash
Testing the Sketch
FAQs

I bricked my board. Can I force the device into DFU mode?
What TLS Version does the WICED Feather support?
When I try to build I'm getting: Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-none-eabi-
g++" (in directory "."): CreateProcess error=2, The system cannot find the file specified
When I try to flash using USB DFU I get the following error from feather_dfu.py: Traceback (most recent call
last): File "...\hardware\Adafruit_WICED_Arduino/tools/feather_dfu.py", line 1, in import usb.backend.libusb1
My board isn't enumerating as a USB device, or is stuck in DFU mode. How can I re-flash the FeatherLib
firmware directly using dfu-util and restore my device?
How can I reflash the bootloader with a JLink or STLink/V2 from the Arduino IDE?
How can I flash the bootloader using AdaLink directly?
I get 'OSError: [Errno 2] No such file or directory OSError: [Errno 2] No such file or directory' when trying to use
feather_dfu.py in the Arduino IDE. What should I do?

Downloads
Related Documents
Schematic
Fabrication Print

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 10 of 202

Overview

Feather (https://adafru.it/l7B) is the new development board from Adafruit, and like its namesake it is thin, light, and lets
you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Adafruit
WICED Feather - it's our most powerful Feather yet! We have other boards in the Feather family, check'em out
here. (https://adafru.it/l7B)

Say "Hi!" the WICED Feather! Perfect for your next Internet connected project, with a processor and WiFi core that can
take anything you throw at it!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 11 of 202

https://www.adafruit.com/feather
https://www.adafruit.com/feather

The WICED Feather is based on Broadcom's WICED (Wireless Internet Connectivity for Embedded Devices) platform,
and is paired up with a powerful STM32F205 ARM Cortex M3 processor running at 120MHz, with support for TLS 1.2 to
access sites and web services safely and securely.

We spent a lot of time adding support for this processor and WiFi chipset to the Arduino IDE you know and love.
Programming doesn't rely on any online or third party tools to build, flash or run your code. You write your code in the
Arduino IDE using many of the same standard libraries you've always used (Wire, SPI, etc.), compile locally, and the
device is flashed directly from the IDE over USB. Note that this chipset is not identical to the Arduino standard-
supported Atmega series and many libraries that are written for AVR will not compile or work with WICED!

Since the WICED Feather is based on the standard Adafruit Feather (https://adafru.it/mf2) layout, you also have instant
access to a variety of Feather Wings, as well as all the usual standard breakouts available from Adafruit or other
vendors.

After more than a year of full time effort in the making, we think it's the best and most flexible WiFi development board
out there, and the easiest way to get your TCP/IP-based project off the ground without sacrificing flexibility or security.
We even cooked in some built-in libraries in the WiFi core, wuch as TCP client and Server, HTTP client and server, and
MQTT client (with easy Adafruit IO interfacing).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 12 of 202

http://www.adafruit.com/feather

The WICED Feather has the following key features:

Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in
Light as a (large?) feather - 5.7 grams
STM32F205RG (https://adafru.it/m9A) 120MHz ARM Cortex M3 MCU
BCM43362 (https://adafru.it/meC) 802.11b/G/N radio
128KB SRAM and 1024KB flash memory (total)
16KB SRAM and 128KB flash available for user code
16MBit (2MB) SPI flash for additional data storage
Built in Real Time Clock (RTC) with optional external battery supply
Hardware SPI and I2C (including clock-stretching)
12 standard GPIO pins, with additional GPIOs available via SPI, UART and I2C pins
7 standard PWM outputs, with additional outputs available via SPI, UART and I2C pins
Up to 8 12-bit ADC inputs
Two 12-bit DAC outputs (Pins A4 and SCK/A5)
Up to 3 UARTs (including one with full HW flow control)
TLS 1.2 support to access secure HTTPS and TCP servers
On board single-cell LIPO charging and battery monitoring
Fast and easy firmware updates to keep your module up to date
Based on the excellent community-supported Maple (https://adafru.it/mpE) project

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 13 of 202

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
https://www.broadcom.com/products/wireless-connectivity/wireless-lan/bcm43362
https://github.com/rogerclarkmelbourne/Arduino_STM32

Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also
toss in some headers so you can solder it in and plug into a solderless breadboard. Lipoly
battery (https://adafru.it/e0v) and MicroUSB cable (https://adafru.it/aM5) not included (but we do have lots of options
in the shop if you'd like!)

Our learn guide will show you everything you need to know to get your projects online, and connected to the outside
world!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 14 of 202

https://www.adafruit.com/categories/138
https://www.adafruit.com/index.php?main_page=adasearch&q=microusb cable

Board Layout

The WICED Feather uses the same standard pinout as the rest of the Feather family (https://adafru.it/m0b), allowing
you to use the same Feather Wings across all your compatible devices.

It has the standard Feather on board LIPO battery charger (simply connect a LIPO battery and USB power at the same
time), and 3.3V voltage regulation from either USB or VBAT (the LIPO cell) with automatic switching between power
supplies.

Pin Multiplexing

The pins on the WICED Feather can be configured for several different purposes, with the main config options shown
in the illustration below:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 15 of 202

https://www.adafruit.com/categories/817

Accessing Pins in Software

For most pin names, you must append 'P' to the pin name shown on the silk screen. The table below lists the pin
names on the silkscreen and their corresponding macro in your Arduino code:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 16 of 202

Other notable pins defined in feather.h (https://adafru.it/CaM) include:

For further details on the board layout, see the schematic here (https://adafru.it/olE).

Power Config

The WICED Feather can be run from either 5V USB power or a standard ~3.7V LIPO cell, and includes the ability to
charge LIPO cells from USB power when both are connected at the same time.

Slikscreen

WAKE

C3

C2

A3

A2

A1

SCK

MOSI

MISO

RX

TX

DFU

B5

SWCLK

SWDIO

A4

B4

A15

C7

C5

SCL

SDA

Arduino Code

WAKE or PA0

PC3

PC2

PA3

PA2

PA1

SCK or PA5

MOSI or PA7

MISO or PA6

PA10

PA9

PB3

PB5

PA14

PA13

P14

PB4

PA15

PC7

PC5

PB6

PB7

Note(s)

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Main Macro Name

BOARD_LED_PIN

Direct Arduino Pin Name

PA15

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 17 of 202

https://github.com/adafruit/Adafruit_WICED_Arduino/blob/master/variants/feather/feather.h
file:///introducing-the-adafruit-wiced-feather-wifi/downloads#schematic

The following pins are included as part of the WICED Feather's power system:

3V: The output of the on-board 3.3V 600mA voltage regulator
RTC: The input for the realt-time clock (RTC) on the STM32F205 (optional)
GND: The common/GND pin which should be connect to GND on any other boards you use
BAT: The input for the 3.7V LIPO cell
EN: The 'EN' switch for the 3.3V voltage regulator. Set this to GND to disable power.
VUSB: The 5V USB power input (USB VBUS)
A1: This pin is optionally connected to a 10K+10K voltage divider that allows you to safely measure the output of
the LIPO cell using the internal ADC (analog to digital converter).

LIPO Cell Power Monitoring (A1)

The LIPO battery level can optionally be monitored via a voltage divider configured on ADC pin A1.

To enable the 10K + 10K voltage divider (which will divide the LIPO voltage levels in half so that the ADC pin can safely
read them), you need to solder shut the BATADC solder jumper on the bottom of the PCB:

This will allow you to read the voltage level of the LIPO cell using pin A1 where each value on the ADC is equal
to 0.80566mV since:

3300mV / 4096 (12-bit ADC) = 0.80566406mV per LSB

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 18 of 202

You need to double the calculated voltage to compensate for the 10K+10K voltage divider, so in reality every value
from the ADC is equal to 1.61133mV on the LIPO cell, although it appears on the ADC at half that level.

16 Mbit (2MByte) SPI Flash

The WICED Feather contains an optional (default = off) 16MBit SPI flash chip that is controlled by FeatherLib.

In order to keep the maximum number of pins available to customers, the SPI flash is disabled by default, but can be
enabled with USB Mass Storage support so that you can access the contents on the flash memory from your PC to
easily exchange data and files. Simply solder the SPIFCS solder jumper on the bottom of the device closed, and make
sure you are running FeatherLib version 0.6.0 or higher to enabled flash and USB mass storage support.

SPI flash is disabled by default. It can be enabled by soldering the SPIFCS (A4) solder jumper on the back of the PCB
closed before powering the board up, which will connect the CS/SSEL of the SPI flash to pin A4:

The 16MBit SPI Flash is enabled starting with FeatherLib 0.6.0. Please make sure you are running a recent
version of FeatherLib when working with the external flash memory.

The SPI3 bus used for SPI flash is controlled by FeatherLib, and the four pins shown below should be avoided
in your own sketches when SPI Flash is enabled in a future FeatherLib release.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 19 of 202

PWM Outputs

Pins that can be used as PWM outputs are marked with a tilde character ('~') on the silk screen.

The timers associated with specific PWM outputs are listed below. These timers are important since all PWM outputs
on the same HW timer will use the same period or pulse width. This means that if you set the pulse width for PA1, which
uses HW Timer 5, this will also set the pulse width for PA2 and PA3 which use the same timer peripheral block.

Pin Name

PA1

PA2

PA3

PA15

PB4

PB5

PC7

HW Timer

Timer 5

Timer 5

Timer 5

Timer 2

Timer 3

Timer 3

Timer 8

Notes

Status LED

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 20 of 202

Assembly
We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use
and configure your Feather

Header Options!

Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male headers, this

lets you plug in the Feather into a solderless breadboard

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 21 of 202

https://learn.adafruit.com/assets/30192
https://learn.adafruit.com/assets/30201

Another option is to go with socket female headers. This

won't let you plug the Feather into a breadboard but it

will let you attach featherwings very easily

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 22 of 202

https://learn.adafruit.com/assets/30195
https://learn.adafruit.com/assets/30196

We also have 'slim' versions of the female headers, that

are a little shorter and give a more compact shape

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 23 of 202

https://learn.adafruit.com/assets/30197
https://learn.adafruit.com/assets/30198

Finally, there's the "Stacking Header" option. This one is

sort of the best-of-both-worlds. You get the ability to

plug into a solderless breadboard and plug a

featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 24 of 202

https://learn.adafruit.com/assets/30199
https://learn.adafruit.com/assets/30200
https://learn.adafruit.com/assets/30183

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to
Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 25 of 202

https://learn.adafruit.com/assets/30184
https://learn.adafruit.com/assets/30185
https://learn.adafruit.com/assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 26 of 202

https://learn.adafruit.com/assets/30187
https://learn.adafruit.com/assets/30188
https://learn.adafruit.com/assets/30189

You're done! Check your solder joints visually and

continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in place so when

you flip over the board they don't fall out

Flip & Tack Solder
After flipping over, solder one or two points on each

strip, to 'tack' the header in place

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 27 of 202

https://learn.adafruit.com/assets/30190
https://learn.adafruit.com/assets/30203
https://learn.adafruit.com/assets/30204

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to
Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 28 of 202

https://learn.adafruit.com/assets/30205
https://learn.adafruit.com/assets/30206
http://learn.adafruit.com/adafruit-guide-excellent-soldering

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 29 of 202

https://learn.adafruit.com/assets/30207
https://learn.adafruit.com/assets/30208
https://learn.adafruit.com/assets/30209

You're done! Check your solder joints visually and

continue onto the next steps

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 30 of 202

https://learn.adafruit.com/assets/30210
https://learn.adafruit.com/assets/30211

Get the WICED BSP

To use the WICED Feather, you first need to install a board support package (BSP) that includes all the classes, drivers
and example code that make it possible to create projects that can talk to the STM32F205 MCU and Broadcom radio.
 This guide will walk you through the process of getting the BSP setup on your development machine.

Adding Adafruit Board Support

The first thing you will need to do is start the IDE and navigate to the Preferences menu. You can access it from the
File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog like this will pop up:

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma separated,
and you will only have to add each URL once. New Adafruit boards and updates to existing boards will automatically be
picked up by the Board Manager each time it is opened. The URLs point to index files that the Board Manager uses to

The WICED BSP installation procedure for 0.6.0 and higher is completely different than the manual
installation procedure from earlier versions. See the notes at the bottom of this page if you are upgrading.

This guide is based on Arduino 1.6.5 or higher. You will need a similar version of the Arduino IDE to follow this
guide, which was tested with 1.6.11.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 31 of 202

build the list of available & installed boards.

Add the Adafruit BSP List

We will only need to add one URL to the IDE in this example, but you can add multiple URLS by separating them with
commas. Copy and paste the link below into the Additional Boards Manager URLs option in the Arduino IDE
preferences.

You should see something like this:

Click OK to save the new preference settings. Next we will look at installing boards with the Board Manager.

Add the Adafruit WICED BSP

Adding the link to the Adafruit board support package does not actually install anything, it only tells the Arduino IDE
where to find the software.

Now that you have added the appropriate URLs to the Arduino IDE preferences, you can open the Boards Manager by
navigating to the Tools->Board menu item.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select Contributed. You will then be able to select and install the boards supplied by the URLs added to the
prefrences.

Find the example named Adafruit WICED from the list and click the Install button:

If you don't see the Additional Boards Manager URLs box, make sure you downloaded the Arduino IDE from
arduino.cc! Older versions and derivatives of the IDE may not have it

https://www.adafruit.com/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 32 of 202

Next, quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able
to see the new boards listed in the Tools->Board menu.

Finally follow the OS specific steps in this guide for your platform to finish the installation - basically installing drivers
and permissions management.

Upgrading From Earlier WICED BSP Releases (<0.6.0)

If you are using an earlier version of the WICED SDK (< 0.6.0), you will need to remove the old files from the
/hardware/Adafruit_WICED_Arduino folder before starting this guide. You may also need to delete the ' arduino15/staging '
dir in the Arduino installation folder before the BSP appears.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 33 of 202

Windows Setup
To setup the WICED Feather on Windows, the following steps are necessary:

Install Adafruit Windows Drivers

If you are using a Windows based system, you will need to install a set of drivers for the USB DFU, USB CDC and other
USB interfaces used by the WICED Feather to perform fimware updates and communicate with the device.

Adafruit provides a convenient Adafruit Windows Drivers (https://adafru.it/mb8) installer that takes care of the details
for you. Simply download and install the package below:

https://adafru.it/mb8

https://adafru.it/mb8

Once the installation process is complete, you should be able to plug your WICED Feather into your system and it will
be recognized thanks to the signed drivers you just installed.

Install libusb 0.1 Runtime

To use libusb (which is required to communicate with the WICED Feather), you will first need to install a pre-compiled
libusb runtime.

You can install this by downloading and running libusb-win32 driver (https://adafru.it/mb9), taking care to select the file
named libusb-win32-devel-filter-1.2.6.0.exe.

https://adafru.it/mba

https://adafru.it/mba

Make sure to DISABLE the 'Launch filter installer wizard' option at the end of the installation process!

This page assumes you have already installed the WICED Feather BSP, as detailed earlier in this guide.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 34 of 202

https://github.com/adafruit/Adafruit_Windows_Drivers/releases
https://github.com/adafruit/Adafruit_Windows_Drivers/releases
https://sourceforge.net/projects/libusb-win32/?source=typ_redirect
https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/libusb-win32-devel-filter-1.2.6.0.exe/download

Install Python 2.7

Python is used by the WICED Feather for a number of cross-platform tools and scripts, meaning that you will need to
install Python 2.7 (https://adafru.it/mbb) (ideally 2.7.9 or higher) on your system in order to communicate with the board.

Depending on whether you are running a 32-bit (x86) or a 64-bit (AMD x64) version of Windows, download the installer
linked below and start the installation process:

https://adafru.it/mbc

https://adafru.it/mbc

https://adafru.it/mbd

https://adafru.it/mbd

During the installation process make sure that you enable the option to add Python to the system path (the option is
disabled by default). This is required for the Arduino IDE to be able to access the python scripts it needs to
communicate with the WICED Feather:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 35 of 202

https://www.python.org/downloads/release/python-2711/
https://www.python.org/ftp/python/2.7.11/python-2.7.11.msi
https://www.python.org/ftp/python/2.7.11/python-2.7.11.amd64.msi

Testing the Python Installation

Once the installer is finished you can open the command line and enter the following command to test the availability
of Python on your system:

You should see something like this:

Install Python Tools

The WICED Feather BSP uses a few Python based tools to allow the Arduino IDE to talk to the hardware in a platform-
independent manner (specifically tools/source/feather_dfu/feather_dfu.py).

To use these Python tools, you will need a few additional libraries to make the python scripts work.

Running the following command from the command line will install these dependencies:

python --version

Python 2.7.11

Update: Recent versions of the BSP now include a pre-compiled version of the feather_dfu tool in the
'/tools/win32-x86/feather_dfu' folder, which should run on most systems once the libusb dependencies
above are installed. You will still need python for the pycert tool though.

pip install --pre pyusb
pip install click

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 36 of 202

This will display some basic progress data on the installation process, and you should end up with something
resembling the following output:

Testing the Installation

You can test if Python is setup correctly by going to the '/tools/source/feather_dfu' folder in the WICED Feather BSP
and running the following command with the WICED Feather connected:

This should display something resembling the following output:

Optional: Install AdaLink

If you ever need to reflash the USB DFU bootloader on the WICED Feather (which will require either a Segger J-
Link (https://adafru.it/e9G) or an STLink/V2 (http://adafru.it/2548)), you will also need to install a utility called
AdaLink (https://adafru.it/fPq).

AdaLink acts as a simple python-based abstraction layer between various HW debuggers, and the different ARM MCU
families that we use at Adafruit.

For installation instructions on AdaLink see the Readme file (https://adafru.it/fPq) in the git repository.

C:\Users\me>pip install --pre pyusb
Collecting pyusb
 Downloading pyusb-1.0.0rc1.tar.gz (53kB)
 100% |################################| 57kB 1.3MB/s
Installing collected packages: pyusb
 Running setup.py install for pyusb
Successfully installed pyusb-1.0.0rc1

This step assumes you have already installed the Arduino IDE and the WICED Feather BSP, detailed earlier in
this learning guide.

$ cd \tools\source\feather_dfu
$ python feather_dfu.py info

Feather
ST32F205RGY
353231313533470E00420037
FF:FF:FF:FF:FF:FF
1.0.0
3.5.2
0.5.0
0.5.0
Mar 8 2016

If you don't see any output when running this tool and you are using a new board, you may need to flash a
user sketch to the module via the Arduino IDE. See the 'Arduino IDE Setup' page in this guide for details on
how to flash a user sketch.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 37 of 202

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_Adalink

Setup Problems

If you are having problems after running through all of the setup steps above, you may find the following information
useful:

I can get my device in DFU mode (fast blinky on the red LED), but the two USB CDC (COM) ports never enumerate. I
have the USB drivers installed, though. What's wrong?

On Windows, you can check if the device is enumerating properly with the following free
tool: http://www.nirsoft.net/utils/usb_devices_view.html

If everything is working correctly, and the WICED Feather is plugged in and enumerating properly, the 'Adafruit
Industries' devices will be highlighted in green:

If your board isn't connected, the Adafruit Industries devices options above should still appear in gray, which means
that the drivers are at least installed correctly.

If you can only get your board to work in DFU mode (either every time it starts up, or by forcing DFU mode by setting
the DFU pin to GND and resetting), you probably need to reflash FeatherLib as well as a valid sketch, which is
described in this FAQ (https://adafru.it/w4A). However, you can also update FeatherLib directly from the Arduino IDE as
follows:

Set the DFU pin to GND on your WICED Feather
Reset the device with DFU connected to GND, which will force it to enter USB DFU mode, and you should see a
fast blinky pattern on the RED LED, indicating that you are in DFU mode.
Disconnect the DFU pin from GND.
With Adafruit WICED Feather selected as the Board Target, changed the section to Feather Lib (Release).
Now compile any simple sketch, and flash it to the device. This will compile the sketch, but Feather Lib will
actually be flashed, not the sketch you just compiled.
Once the flashing process is done, change the section back to User Code and then flash your sketch again,
which will now flash a simple sketch. A blinky example is best since you can see the results.
When you reset your device, you should now have an updated FeatherLib as well as a valid user sketch, meaning
that the two USB CDC ports can enumerate, since a valid code entry point has been found in the valid user
sketch.

If you continue to have problems, please post to the Adafruit Support Forum (https://adafru.it/dYq) with the following
information:

A screenshot from the USB Device View tool showing the Adafruit Industries entries if present (to validate driver
installation)
Indicate whether you can successfully enter DFU mode by connected the DFU pin to GND and resetting.
The results of running the dfu-util -l command with the WICED Feather connected, which will let us know if the
USB DFU device was detected

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 38 of 202

http://www.nirsoft.net/utils/usb_devices_view.html
file:///introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6
https://forums.adafruit.com/

OS X Setup
To setup the WICED Feather on OS X, the following steps are necessary:

Install dfu-util

The WICED Feather uses USB DFU to perform firmware updates from the Arduino IDE. To enable to Arduino IDE to
talk to the board you will need to install dfu-util.

The easiest way to install dfu-util is to use homebrew (https://adafru.it/df3), which can be installed with the following
command if it doesn't already exist on your system:

Once homebrew is installed you can install dfu-util from the command line with the following command:

Testing the Installation

You can check if dfu-util was installed correctly by running the following command with the WICED Feather connected:

This should give you results resembling the following output:

Install Python Tools

The WICED Feather BSP uses a few Python based tools (see the tools/ folder for details).

This page assumes you have already installed the WICED Feather BSP, as detailed earlier in this guide.

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew install dfu-util

Make sure your board is in DFU mode before running this command. You can enter DFU mode by double-
clicking the RESET button quickly, or by setting the DFU pin to GND at startup. You'll know that are in DFU
mode because the status LED will blink at a 5Hz rate.

$ dfu-util --list

dfu-util 0.8

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2014 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to dfu-util@lists.gnumonks.org

Deducing device DFU version from functional descriptor length
Found DFU: [239a:0008] ver=0200, devnum=12, cfg=1, intf=0, alt=0, name="@Internal Flash /0x08000000/02*016Ka,02*016Kg,01*064Kg,07*128Kg", serial="00000000001C"

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 39 of 202

http://brew.sh/

To use these Python tools, you will need to have Python available on your system (which OS X does by default), but
you will also need a few additional libraries to make the python scripts work.

Running the following command from the command line will install these dependencies:

Testing the Installation

You can test if Python is setup correctly by going to the '/tools/source' folder in the WICED Feather BSP and running
the following command with the WICED Feather connected:

This should display something resembling the following output:

Optional: Install AdaLink

If you ever need to reflash the USB DFU bootloader on the WICED Feather (which will require either a Segger J-
Link (https://adafru.it/e9G) or an STLink/V2 (http://adafru.it/2548)), you will also need to install a utility called
AdaLink (https://adafru.it/fPq).

Depending on your system setup you may need to run the pip commands with 'sudo'

On versions of OS X from 10.11.5 onward run ...
sudo pip install pyusb
sudo pip install click

On versions of 0S X before 10.11.5 run ...
sudo pip install --pre pyusb
sudo pip install click

If you get an error like '-bash: pip: command not found' you can install pip via 'sudo easy_install pip'

As of BSP release 0.6.5 and higher the feather_dfu Python tool has been converted to a binary tool called
wiced_dfu, and the section below should only be followed on earlier versions of the BSP. Version 0.6.5 and
higher ship with pre-compiled versions of wiced_dfu, or you can build the binary yourself using the makefile
in the tools/wiced_dfu folder.

$ cd tools/source/feather_dfu
$ python feather_dfu.py info

Feather
ST32F205RGY
353231313533470E00420037
FF:FF:FF:FF:FF:FF
1.0.0
3.5.2
0.5.0
0.5.0
Mar 8 2016

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 40 of 202

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink

AdaLink acts as a simple python-based abstraction layer between various HW debuggers, and the different ARM MCU
families that we use at Adafruit.

For installation instructions on AdaLink see the Readme file (https://adafru.it/fPq) in the git repository.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 41 of 202

https://github.com/adafruit/Adafruit_Adalink

Linux Setup
To setup the WICED Feather on Linux (Ubuntu 14.04 was used here) the following steps are necessary:

UDEV Setup

On Linux you will need to add a small udev rule to make the WICED board available to non-root users. If you don't have
this rule then you'll see permission errors from the Arduino IDE when it attempts to program the board.

Create or edit a file called /etc/udev/rules.d/99-adafruit-boards.rules and add the following lines:

Depending on your distribution you might need to change GROUP="plugdev" to a different value like "users" or
"dialout" . The dialout group should work for Ubuntu.

Then restart udev with:

Or on systemd-based systems like the latest Debian or Ubuntu 15.04+ restart udev with:

Install dfu-util

The WICED Feather uses USB DFU to perform firmware updates from the Arduino IDE. To enable to Arduino IDE to
talk to the board you will need to install dfu-util.

Many Linux distributions include a binary version of dfu-util in their package management system, but they are often
out of date and lower than the 0.8 version required by the WICED Feather.

If you are using Ubuntu 15.04 or higher, you can install dfu-util 0.8 via the following command:

PID 0008 = DFU Mode, 0010 = Application Mode/CDC, 8010 = Application Mode/CDC + USB Mass Storage

This file is used to gain permission for the WICED Feather module
Copy this file to /etc/udev/rules.d/

ACTION!="add|change", GOTO="adafruit_rules_end"
SUBSYSTEM!="usb|tty|hidraw", GOTO="adafruit_rules_end"

Please keep this list sorted by VID:PID

WICED Feather in DFU mode
ATTRS{idVendor}=="239a", ATTRS{idProduct}=="0008", MODE="664", GROUP="plugdev"

WICED Feather in Application mode
ATTRS{idVendor}=="239a", ATTRS{idProduct}=="0010", MODE="664", GROUP="plugdev"
ATTRS{idVendor}=="239a", ATTRS{idProduct}=="8010", MODE="664", GROUP="plugdev"

LABEL="adafruit_rules_end"

sudo restart udev

sudo systemctl restart udev

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 42 of 202

If you are using an older version of Ubuntu or if ' dfu-util -v ' displays an older version like 0.5 you will need to buid dfu-
util from source, as described below.

Building dfu-util From Source (Ubuntu 14.04 etc.)

Ubuntu 14.04 and several other distributions use dfu-util 0.5 which is too old for the WICED Feather (which requires
dfu-util version 0.8 or higher).

To build dfu-util from source run the following commands (Ubuntu 14.04 is assumed here), first install the required build
dependencies:

Then download the git repo containing the dfu-util source:

Then build the dfu-util from source:

You can then install and verify dfu-util via the following commands, which should show version 0.8 or 0.9 for dfu-util:

Testing the Installation

You can check if dfu-util was installed correctly by running the following command with the WICED Feather connected:

This should give you the following output:

$ sudo apt-get install dfu-util

$ sudo apt-get install git
$ sudo apt-get build-dep dfu-util
$ sudo apt-get install libusb-1.0-0-dev

$ git clone git://git.code.sf.net/p/dfu-util/dfu-util
$ cd dfu-util

$./autogen.sh
$./configure # on most systems
$ make

$ sudo make install
$ hash -r
$ dfu-util -V

$ dfu-util --list

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 43 of 202

Install Python Tools (BSP <= 0.6.2)

The WICED Feather BSP uses a few Python based tools to allow the Arduino IDE to talk to the hardware in a platform-
independent manner (specifically tools/feather_dfu/feather_dfu.py).

To use these Python tools, you will need to have Python available on your system (which most Linux distributions do by
default), but you will also need a few additional libraries to make the python scripts work.

Running the following command from the command line will install these dependencies:

Testing the Installation

You can test if Python is setup correctly by going to the '/tools/feather_dfu' folder in the WICED Feather BSP and
running the following command with the WICED Feather connected:

This should display something resembling the following output:

dfu-util 0.9

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2016 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to http://sourceforge.net/p/dfu-util/tickets/

Found DFU: [239a:0008] ver=0200, devnum=6, cfg=1, intf=0, path="2-1", alt=0, name="@Internal Flash /0x08000000/02*016Ka,02*016Kg,01*064Kg,07*128Kg", serial="00000000001C"

As of BSP release 0.6.5 and higher the feather_dfu Python tool has been converted to a binary tool called
wiced_dfu, and the section below should only be followed on earlier versions of the BSP. Version 0.6.5 and
higher ship with pre-compiled versions of wiced_dfu, or you can build the binary yourself using the makefile
in the tools/wiced_dfu folder.

sudo pip install --pre pyusb
sudo pip install click

cd tools/feather_dfu
sudo python feather_dfu.py info

Feather
ST32F205RGY
353231313533470E00420037
FF:FF:FF:FF:FF:FF
1.0.0
3.5.2
0.5.0
0.5.0
Mar 8 2016

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 44 of 202

Optional: Install AdaLink

If you ever need to reflash the USB DFU bootloader on the WICED Feather (which will require either a Segger J-
Link (https://adafru.it/e9G) or an STLink/V2 (http://adafru.it/2548)), you will also need to install a utility called
AdaLink (https://adafru.it/fPq).

AdaLink acts as a simple python-based abstraction layer between various HW debuggers, and the different ARM MCU
families that we use at Adafruit.

For installation instructions on AdaLink see the Readme file (https://adafru.it/fPq) in the git repository.

External Resources

For further details on setting up Linux for the WICED Feather see the following links:

Adafruit Feather WICED and Ubuntu 14.04 (https://adafru.it/mRc)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 45 of 202

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_Adalink
http://x10linux.blogspot.com.es/2016/04/adafruit-feather-wiced-and-ubuntu-1404.html

Arduino IDE Setup
Once you have the WICED Feather board support package set up -- as described in Get the WICED
BSP (https://adafru.it/rod) earlier in this guide -- you can start compiling code against FeatherLib or update the firmware
on your device directly from the Arduino IDE.

To make sure that the Arduino IDE has access to all of the tools, libraries and config data it needs, however, you will
first need to make some adjustments in the IDE:

Board Selection

The first thing to do (assuming that you already have the WICED BSP installed on your system, as describe in Get the
WICED BSP earlier in this guide!) is to make sure that you have Adafruit WICED Feather selected as the Board target.

To change the board target, simply click the Tools > Board menu item and then select Adafruit WICED Feather under
the 'Adafruit Feather Boards' heading:

The actual position of the board in your menu will depend on your system setup, but it should resemble the following
image:

Setting the 'Section'

As described in the System Architecture page in this guide, the WICED Feather is broken up into three separate
firmware images: the user code, FeatherLib, and the USB DFU bootloader.

Each of these firmware images exists in a specific section of the flash memory on the STM32F205 MCU, and you can
switch between the two user-modifiable sections via the Tools > Section menu:

Selecting the right board target is critical since the board target is what causes the FeatherLib support files to
be included as part of the build process!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 46 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/get-the-wiced-bsp

The following sections are available in the menu:

User Code: This section (which consists of 128KB flash and 16KB SRAM) is where your user sketches go, which is
the project that you compile in the Arduino IDE. This is the section you will want to use 99% of the time!
Feather Lib: This is the library that contains the low level WiFi stack and security layer, manage the RTOS (real
time operating system) that schedules different tasks on the system, and does all of the heavy lifting for you. By
selecting 'Feather Lib' as the section and then flashing your WICED Feather like you would for a normal project
you can either reflash or update the FeatherLib on your hardware. If you update the WICED Feather BSP and a
new version of FeatherLib is available, you would do this once to update your device and then switch back to
'User Code'.

Feather Lib (Release): This will flash the latest release version of FeatherLib
Feather Lib (Beta): This will flash the latest BETA release of FeatherLib if one is available. If no BETA
version is available, this is generally identical to the release files. You should check the FeatherLib version
numbers to verify if there is a difference.

Factory Reset: Selecting this 'section' and then flashing your device is a bit of a hack since it won't actually flash
a sketch, but it will use the feather_dfu.py tool to perform a factory reset on your device in case it went off into
the weeds somehow.
NVM Reset: Similar to the factory reset above, selectiing this section and then flashing your device will cause the
non-volatile config memory on your WICED Feather to be reset to factory defaults (although the rest of the
device, such as the user code, will be left untouched).

To flash the appropriate code to the device (or perform a factory reset or NVM reset), you simply need to change the
section and click the Sketch > Upload tools menu, or click the arrow icon in the Arduino IDE (the second icon from the
left below):

Selecting the Serial Port

By default, two USB CDC serial ports will be enumerated with the WICED Feather. One serial port will be used for

If you select FeatherLib, Factory Reset or NVM Reset (which require no code compilation themselves) a full
project compilation will still take place before FeatherLib is flashed or a reset is performed. The compiled
user code will not be used, but the compilation process can't be avoided due to the nature of sections in the
Arduino IDE.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 47 of 202

general purpose serial data and is connected to the Serial Monitor. This is the port you should normally select in the
Arduino IDE.

The second port that is enumerated is for basic debugging and for future expansion, and enumerates a currently
unused AT Parser that only supports a very basic set of commands (for example 'ATI' will return some basic information
about the module).

With the right serial port selected (normally the numerically lowest number is the Serial Monitor COM port, though it´s
random and may change from one system to the next), you can open the Serial Monitor and you can send and receive
serial data like you would with any other Arduino development board.

On Windows, you can verify which COM port corresponds to which function by opening the Device Manager and
examining the list of serial ports. COM35 below is the Serial Monitor port (WICED Feather Serial) and COM36 is the AT
parser port (WICED Feather ATParser).

If you are not seeing a USB CDC port and are using a new WICED board, please see this FAQ:
https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 48 of 202

https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi/faqs#faq-6

Optional: Updating the Bootloader

While you should never have to update the USB DFU bootloader on your WICED Feather, if you have a Segger J-
Link (https://adafru.it/e9G) or an STLink/V2 (http://adafru.it/2548) you can reflash the normally read-only bootloader
from within the Arduino IDE.

A J-Link or STLink is required since this is the only way to talk to the STM32F205 if the bootloader is somehow erased.

To reflash the bootloader hook the SWDIO, SWCLK, RESET and GND pins up to the pins of the same name on the
WICED Feather (see the JLink or STLink/V2 pinout to know where to find these pins on your debugger). If you are
using a JLink, make sure to also connect the VTRef pin to 3.3V on the WICED Feather since it needs to know the logic
level for the target device.

Select the appropriate debugger from the Tools > Programmer menu (only the J-Link or STLink options will work!):

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 49 of 202

https://www.adafruit.com/product/1369
https://www.adafruit.com/products/2548

You can then click the Burn Bootloader menu entry and the Arduino IDE will attempt to use the JLink or STLink (via
AdaLink (https://adafru.it/fPq)) to reflash the bootloader for you.

Compiling your Sketch

At this point you're ready to start flashing your projects to the WICED Feather as you would with any other Arduino
compatible development board!

If you run into any problems, make sure that the WICED Feather BSP is properly configured, that you have installed the
appropriate ARM Cortex M3 toolchain, and that the IDE is setup with the following values:

Board: Adafruit WICED Feather
Section: User Code
Serial Port: Typically the numerically lowest WICED CDC port, but it should be set to the COM port that appears
as 'WICED Feather Serial' in the Device Manager on Windows where the order of enumeration may change.

Then just click the 'Upload' arrow icon, and the compilation and USB DFU flashing process should start, which will
result in the following output:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 50 of 202

https://github.com/adafruit/Adafruit_Adalink

The 'Error during download get_status' message can be ignored and is related to the USB DFU interface as
implemented on the MCU.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 51 of 202

System Architecture
One of the key challenges creating the WICED Feather is that it is based on the Broadcom WICED WiFi stack, and due
to the license terms we're unable to release any of the source files.

This poses a bit of a dilemma since we tested almost every embedded WiFi stack out there, and WICED easily climbed
to the top in terms of features, performance and reliability. We want that reliability and speed, but we also want to
make sure customers have the flexibility to bring all kind of projects to life as well, without having to sign restrictive
license agreements themselves.

So how do we make this available to customers in a way they can use in the real world, without signing NDAs
themselves?

The answer wasn't obvious at first, but FeatherLib was the end result of a lot of head scratching and firmware dead
ends.

WICED WiFi + RTOS + SDEP = FeatherLib

The proprietary Broadcom WICED WiFi stack is designed around an RTOS (Real Time Operating System), which
handles all of the various tasks involved in WiFi, such as async data requests, security and cryptography, etc. (If you're
not familiar with them, an RTOS breaks tasks into 'threads', and then shares MCU cycles between those threads,
allowing you to effectively multi-task on a single MCU.)

The RTOS and all of the proprietary Broadcom WiFi stack and code runs behind the scenes in a binary black box we
call the FeatherLib (see the Flash Memory Layout section below for details). By providing a binary black box, we solve
the legal hurdles of working with WICED, but this still leaves the problem of exposing the WiFi functionality to end user.

We solved this by essentially 'wrapping' every useful function in the WICED stack with a custom command (using an in
house protocol called SDEP), and then routing these commands between the Broadcom SDK in FeatherLib and end
users. We can freely expose the source related to the SDEP commands (since we wrote 100% of it), while still hiding
the proprietary Broadcom functions, header files and structs. The lawyers are happy, and hopefully our customers are
too!

By basically reimplementing the entire Broadcom WICED WiFi stack with a new set of SDEP commands and a more
focused custom API, you get access to Broadcoms high quality stack, without any of the legal headaches. The
headaches were all on our side reimplementing the wheel just to solve a legal problem. :)

Arduino User Code

This left the problem of how to allow users to write code themselves that talks to FeatherLib via SDEP.

Since FeatherLib runs on an RTOS, we start a single RTOS 'thread' at startup that is used for the user code. FeatherLib
will start the Broadcom WiFi stack, and as part of that process it also start the 'user code' thread that runs the custom
code that you write and compile in the Arduino IDE.

This custom user code is built in the Arduino IDE like you would for any other MCU, and gets written into a dedicate
section of flash memory with it's own chunk of SRAM reserved purely for the user code in Arduino land.

This setup allows you to share the MCU processing time between your own code and the lower level WiFi stack, but
the process should normally be invisible to you, and you never really need to worry about the FeatherLib black box.

Inter Process Communication (SDEP)

Communication between the user code and the Feather lib happens via an in-memory messaging system, sending and

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 52 of 202

receiving commands using a custom protocol we call SDEP (Simple Data Exchange Protocol).

An SDEP command is sent to the Feather lib, and a standard response is sent back and interpretted, allowing the two
binary blobs to exist entirely independent of each other, and be updated separately.

You normally never need to deal with SDEP commands directly since the commands are all hidden in the public WICED
Feather helper classes (AdafruitFeather, AdafruitHTTP, etc.). These helper classes and functions send the SDEP
commands for you, and convert the responses into meaningful data.

There is a special AdafruitSDEP helper class that allows you to send SDEP commands directly if the need does every
arise, though, and the SDEP commands are all documented elsewhere in this learning guide.

Flash Memory Layout

To keep things as simple as possible, and to make updates easy, the flash-memory and SRAM on the STM32F205
MCU is broken up into several Sections, as shown in the diagram below.

Keeping the sections independent allows you to update the user code without having to recompile and reflash the rest
of the system, significantly speeding up build and write times.

User Code (256KB + 20KB SRAM)

Your own code ('User Code') will be compiled directly by the Arduino IDE, and has access to 256KB of flash and 20KB
of SRAM.

Feather Lib (704 KB + 108KB SRAM)

The low level WiFi stack from Broadcom ('Feather Lib') is provided as a single pre-compiled .hex file that gets flashed to
a dedicated location in flash memory on the STM32F205 MCU. Because most of the heavy lifting is done here, it has

Earlier versions of the WICED Feather (<0.6.0) only reserved 128KB flash and 16KB SRAM for user code. If you
have an older board, just update your FeatherLib and reset the board to benefit from the new 256KB flash
and 20KB SRAM limit on FeatherLib 0.6.0 and higher.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 53 of 202

access to most of the flash and SRAM.

Config Data (32KB)

Two identical sets of non-volatile config data are stored in this section, and when any changes are made the bank
used is switched to make sure that no data is lost during the updates. Normally you will never access this memory
directly, and this is managed by the Feather Lib.

USB DFU Bootloader (32KB)

This code runs as soon as your device powers up and starts the Feather Lib, and also checks if any User Code is
available.

This is what allows you to update the User Code or Feather Lib using USB DFU.

The bootloader code itself can be updated from the Arduino IDE as well, but it requires you have either a Segger J-Link
or an STLink/V2 connected to the SWDIO and SWCLK pins on the WICED Feather, and you will normally never need to
update the bootloader yourself.

USB Setup

The WICED Feather enumerates several USB classes, depending on the operating mode that the board is in.

DFU Mode (Fast Blinky)

When the WICED Feather is in DFU mode (which you can detect thanks to a fast, constant rate blinky on the LED), the
following USB classes are available:

DFU - Allows you to update the firmware on your board using dfu-util

When running in DFU mode the WICED Feather enumerates with the following VID/PID values:

VID: 0x239A
PID: 0x0008

Normal Operating Mode (User Code)

When the WICED Feather is running in normal operating mode, meaning it is running user code, three USB classes are
enumerated:

WICED Feather Dummy: Allows SDEP commands to be sent to the WICED Feather using the USB control
endpoint (to force a reset, change operating modes, etc.). Note that this is actually just a work around to gain
access to the USB control transfer endpoint with libusb since we can't access control transfers directly, ergo the
name 'Dummy'.
Serial Monitor CDC: This USB CDC class is used to handle Serial Monitor input and output
AT Parser CDC: This (currently unused) USB CDC class enumerates for future expansion and currently exposes
an AT Parser with a very limited set of commands, but may be repurposed for other uses in the future.

When running in normal operating mode, the WICED Feather will enumerate with the following VID/PID:

VID: 0x239A
PID: 0x0010

The WICED Feather also contains a currently unused 16 MBit (2MB) SPI Flash that will be enabled in a future firmware

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 54 of 202

update. When the solder jumper on the bottom of the WICED Feather is enabled, an addition USB Mass Storage class
will enumerate that points to the SPI flash. This feature is not yet enabled, but when enabled the WICED Feather will
use the following VID/PID combination:

VID: 0x239A
PID: 0x8010

Flash Updates

All flash updates happen using USB DFU. There is no serial bootloader on the WICED Feather and the USB CDC ports
are not required to perform a firmware update.

To perform a firmware update, the 'Enter DFU Mode' SDEP command is sent to the WICED Feather using the WICED
Feather Dummy endpoint, which will cause the device to reset into DFU mode. At this point, dfu-util will be used to
update the flash contents of the chip with the appropriate firmware image.

If FeatherLib is present, but no valid user code is available, the board will go into DFU mode by default.

Please note that if you have any errors in your user code, such as a blocking delay that the RTOS task
manager can't escape from, you may see problems enumerating some USB interfaces like CDC. To resolve
this problem, simply flash a valid user sketch and reset the device. USB CDC is not required to flash firmware
images to the board.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 55 of 202

WICED Feather API
In order to simplify the most common activities with the WICED Feather, several helper classes have been added to the
board support package.

These helper classes are described below, and detailed explanations of each class can be found later in this guide.

AdafruitFeather

This is the main class you will use to configure the WICED Feather. It contains functions to connect or disconnect to an
AP, ping another device, set certificate details when using TLS and HTTPS, as well as a few more specialized
commands like some MQTT commands to use the internal MQTT stack in the WICED Feather WiFi stack.

For detailed information see: AdafruitFeather (https://adafru.it/mfa) and AdafruitFeather: Profiles (https://adafru.it/mfb)

AdafruitTCP

The AdafruitTCP class provides helper functions to open, close and work with TCP based socket connections. There
are convenient callback functions for the socket disconnect events, as well as when data is received, and you can
start an open or SSL based connection.

For detailed information see: AdafruitTCP (https://adafru.it/mfc) and AdafruitTCPServer (https://adafru.it/mfd)

AdafruitUDP

The AdafruitUDP class provides helper functions to open, close and work with UDP based socket connections. There is
a callback function to handle data receive events.

For detailed information see: AdafruitUDP (https://adafru.it/mfe)

AdafruitHTTP

This class provides a convenient wrapper for the most common HTTP activities, including a callback for when data is
received, and helpers to deal with response headers and and TLS (for secure HTTPS connections).

For detailed information see: AdafruitHTTP (https://adafru.it/mff)

AdafruitMQTT

This class provides a basic MQTT client, allowing you to connect to remote MQTT brokers over a standard TCP
connection. You can establish open or secure connections to the MQTT broker, publish to topics, subscribe to up
to eight topics (including using subscribe wildcards like 'adafruit/+' to subscribe to all changes above '/adafruit'), and
capture subscribe events via a convenient callback handler.

For detailed information see: AdafruitMQTT (https://adafru.it/mfg) and AdafruitMQTTTopic (https://adafru.it/mfh)

AdafruitAIO

The AdafruitAIO family is a specialized version of the AdafruitMQTT classes, and is designed to work specifically with
Adafruit IO (https://adafru.it/eIC).

For detailed information see: AdafruitAIO (https://adafru.it/mfi) and AdafruitAIOFeed (https://adafru.it/mfj)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 56 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/adafruitfeather
file:///introducing-the-adafruit-wiced-feather-wifi/adafruitfeather-profiles
file:///introducing-the-adafruit-wiced-feather-wifi/adafruittcp
file:///introducing-the-adafruit-wiced-feather-wifi/adafruittcpserver
file:///introducing-the-adafruit-wiced-feather-wifi/adafruitudp
file:///introducing-the-adafruit-wiced-feather-wifi/adafruithttp
file:///introducing-the-adafruit-wiced-feather-wifi/adafruitmqtt
file:///introducing-the-adafruit-wiced-feather-wifi/adafruitmqtttopic
http://io.adafruit.com
file:///introducing-the-adafruit-wiced-feather-wifi/adafruitaio
file:///introducing-the-adafruit-wiced-feather-wifi/adafruitaiofeed

AdafruitSDEP

This class handles sending and receiving SDEP messages between the user code and the lower level feather lib.
 Normally you will never need to send SDEP messages yourself, and you will use the higher level helper classes
mentionned elsewhere on this page, but AdafruitHTTP inherits from AdafruitSDEP, so you have access to all of the
functions in AdafruitSDEP via the standard Feather object, such as Feather.sdep_n(...), Feather.errno(), etc.

For detailed information see: AdafruitSDEP (https://adafru.it/mfk)

Client API

The WICED Feather board support package also includes support for the standard Arduino
Client (https://adafru.it/lFj) interface, which is common to almost every networking device in the Arduino family. The
Adafruit helper classes mentionned above expose many standard Client functions, and you should be able to adapt
Client based example code to the WICED Feather with minimal changes and effort.

For detailed information see: Client

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 57 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/adafruitsdep
https://www.arduino.cc/en/Reference/ClientConstructor

AdafruitFeather
AdafruitFeather is the main class that you will use for common operations like connecting to an access point (AP),
checking error codes, getting your IP address, or working with stored AP profiles.

AdafruitFeather API

The following functions are available in AdafruitFeather (which is normally accessible as Feather.* in all of your
sketches, for example ' Feather.factoryReset() ').

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 58 of 202

Firmware Version Management

Since the Arduino/user code, FeatherLib binary, Broadcom WICED SDK and bootloader version need to work with each
other, it's important to make sure that the version numbers of the various components of the WICED Feather are in

char const* bootloaderVersion (void);
char const* sdkVersion (void);
char const* firmwareVersion (void);
char const* arduinoVersion (void);

int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap);

bool connect (void);
bool connect (const char *ssid);
bool connect (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO);

bool begin (void);
bool begin (const char *ssid);
bool begin (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO);

void disconnect (void);

bool connected (void);
uint8_t* macAddress (uint8_t *mac);
uint32_t localIP (void);
uint32_t subnetMask (void);
uint32_t gatewayIP (void);
char* SSID (void);
int32_t RSSI (void);
int32_t encryptionType (void);
uint8_t* BSSID (uint8_t* bssid);

IPAddress hostByName (const char* hostname);
bool hostByName (const char* hostname, IPAddress& result);
bool hostByName (const String &hostname, IPAddress& result);

uint32_t ping (char const* host);
uint32_t ping (IPAddress ip);

void factoryReset (void);
void nvmReset (void);

bool randomNumber (uint32_t* random32bit);

bool getISO8601Time (iso8601_time_t* iso8601_time);
uint32_t getUtcTime (void);

bool useDefaultRootCA (bool enabled);
bool initRootCA (void);
bool addRootCA (uint8_t const* root_ca, uint16_t len);
bool clearRootCA (void);

void printVersions (Print& p = Serial);
void printNetwork (Print& p = Serial);
void printEncryption (int32_t enc, Print& p = Serial);

void setDisconnectCallback (void (*fp) (void));

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 59 of 202

sync.

The following helper functions are provided to retrieve the current version numbers for the the various components
used by your device.

char const* bootloaderVersion (void)

Returns the current bootloader version string.

Parameters: None

Returns: A null-terminated string containing the current bootloader version in the MAJOR, MINOR, REVISION format,
ex: "1.0.0".

char const* sdkVersion (void)

Returns the current Broadcom WICED SDK version string.

Parameters: None

Returns: A null-terminated string containing the current Broadcom WICED SDK version in the MAJOR, MINOR,
REVISION format, ex: "3.5.2".

char const* firmwareVersion (void)

Returns the current FeatherLib version string.

Parameters: None

Returns: A null-terminated string containing the current FeatherLib version in the MAJOR, MINOR, REVISION format,
ex: "0.5.0".

char const* arduinoVersion (void)

Returns the current Arduino library version string. This corresponds to the library used when building code in the
Arduino IDE, which handles the low level communication to FeatherLib.

Parameters: None

Returns: A null-terminated string containing the current Arduino library version in the MAJOR, MINOR, REVISION
format, ex: "0.5.0".

Scanning

The following function initiates an access point (AP) scan to determine which APs are in range of the WICED Feather.

int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap)

Initiates a new access point scan and returns the device details for any access point(s) within range of the WICED
Feather.

Parameters:

ap_list: A pointer to an wl_ap_info_t array where the details for any AP found should be inserted. This array
needs to be large enough to hold up to 'max_ap' entries!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 60 of 202

max_ap: The maximum number of access points to write to 'ap_list'.

Returns: The number of APs written into ap_list.

Connecting

The following functions are used to connect to an access point.

bool connect (void)

This function will attempt to connect using the list of Profiles stored in non-volatile config memory on the WICED
Feather. See the AdafruitFeather: Profiles page in this learning guide for details on how to use the profile system.

Parameters: None

Returns: 'True' (1) if a connection was established with an AP based on the stored profile data, otherwise 'false' (0).

bool connect (const char *ssid)

Attempts to connect to the open (security type = ENY_TYPE_OPEN) access point matching the 'ssid' parameter.

Parameters:

ssid: A string containing the name of the SSID to attempt to connect to.

 Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connect (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)

Attempts to connect to the specified SSID using the supplied password ('key') and optionally a specific security type
('enc_type').

The security type is optional and if no value is provided the WICED Feather will attempt to determine the security type
on it's own, but the connection process will terminate more quickly if you provide the appropriate security type since
this avoids the need to perform a full access point scan before the connection attempt starts.

Parameters:

ssid: A string containing the name of the SSID to attempt to connect to.
key: The password to use when connecting to the AP
enc_type: The wl_enc_type_t value that indicates what type of security is used by the AP. The default value for
this field is ENC_TYPE_AUTO which will cause the WICED Feather to determine this information for you, at the
expense of a slower connection interval since we first have to perform a full access point scan. See
the Constants page in this learning guide for a list of possible values for this parameter.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool begin (void)

This is an alias for ' bool connect(void) ' described above, and is provided to match the Arduino Client interface.

See the 'Constants' page in this learning guide for details on the wl_ap_info_t struct.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 61 of 202

bool begin (const char *ssid)

This is an alias for ' bool connect(const char* ssid) ' described above, and is provided to match the Arduino Client interface.

bool begin (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)

This is an alias for ' bool connect(const char *ssid, const char *key, int enc_type) ' described above, and is provided to match
the Arduino Client interface.

void disconnect (void)

Disconnects from the current access point.

Parameters: None

Returns: Nothing

Network and Connection Details

The following functions provide information about the connection or the network setup when your device is connected
to an access point (AP).

bool connected (void);

Checks if you are currently connected to an AP or not.

Parameters: None

Returns: 'True' (1) if you are currently connected to an access point (AP), otherwise 'false' (0).

uint8_t* macAddress (uint8_t *mac);

Gets the HW mac address for the WICED Feather.

Parameters:

mac: The 6-byte uint8_t array to assign the mac address to. If you don't wish to use this field and use the
optional 'return value' instead simply provide NULL to this parameter.

Returns: A pointer to a 6-byte array containing the 48-bit HW MAC address for your WICED Feather.

uint32_t localIP (void);

Returns the IPv4 address for your WICED Feather.

Parameters: None

Returns: A 32-bit integer containing the four bytes that make up the IPv4 address for your device.

uint32_t subnetMask (void);

Returns the IPv4 subnet mask.

Parameters: None

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 62 of 202

Returns: A 32-bit integer containing the four bytes that make up the IPv4 subnet mask.

uint32_t gatewayIP (void);

Returns the IPv4 gateway IP.

Parameters: None

Returns: A 32-bit integer containing the four bytes that make up the IPv4 gateway address.

char* SSID (void);

Returns the SSID for the current access point (AP).

Parameters: None

Returns: A null-terminated string containing the SSID name for the current AP.

int32_t RSSI (void);

Returns the current return signal strength indicator (RSSI) in dBm, which indicate the strength of the connection
between the WICED Feather and the remote access point. The larger the number, the strong the signal is (ex. -90dBm
is weaker than -65dBm).

Parameters: None

Returns: The return signal strength indicated in dBm.

int32_t encryptionType (void);

Returns the current encryption type used by the AP. See wl_enc_type_t on the constants page for a list of possible
encryption types.

Parameters: None

Returns: An integer corresponding to the wl_enc_type_t enum list described on the constants page in this learning
guide.

uint8_t* BSSID (uint8_t* bssid);

Gets the access point mac address for the remote AP used by the WICED Feather.

Parameters:

bssid: The 6-byte uint8_t array to assign the BSSID address to. If you don't wish to use this field and use the
optional 'return value' instead simply provide NULL to this parameter.

Returns: A pointer to a 6-byte array containing the 48-bit MAC address for the access point your WICED Feather is
connected to.

DNS Lookup

The following helper functions allow you to look up a host name on the DNS server, converting it to an IP address:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 63 of 202

IPAddress hostByName (const char* hostname)

Parameters:

hostname: A string representing the domain name to lookup (ex. "www.adafruit.com").

Returns: The IPAddress (https://adafru.it/lGd) corresponding to the specified hostname.

bool hostByName (const char* hostname, IPAddress& result)

Looks up the domain name specified in the 'hostname' string, and assigns it to the
IPAddress (https://adafru.it/lGd) referenced by the 'result'.

Parameters:

hostname: A string representing the domain name to lookup (ex. "www.adafruit.com").
result: the IPAddress (https://adafru.it/lGd) object that the lookup results will be assigned to.

Returns: 'True' (1) if the DNS lookup was successful, otherwise 'false' (0).

bool hostByName (const String &hostname, IPAddress& result)

Looks up the domain name specified in the 'hostname' string, and assigns it to the
IPAddress (https://adafru.it/lGd) referenced by the 'result'.

Parameters:

hostname: A string representing the domain name to lookup (ex. "www.adafruit.com").
result: the IPAddress (https://adafru.it/lGd) object that the lookup results will be assigned to.

Returns: 'True' (1) if the DNS lookup was successful, otherwise 'false' (0).

Ping

Ping can be used to detect of another server or device is available (although not all devices respond to ping
requests!). The following helpers are available for this purpose:

uint32_t ping (char const* host)

Pings the domain name specified in the 'host' string.

Parameters:

host: The domain name to ping (ex. "www.adafruit.com").

Returns: The response time in milliseconds if the domain responded to the ping request, or '0' if the ping failed.

uint32_t ping (IPAddress ip)

Pings the specified IPAddress (https://adafru.it/lGd).

Parameters:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 64 of 202

https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress

ip: The IPAddress (https://adafru.it/lGd) to ping.

Returns: The response time in milliseconds if the IP address responded to the ping request, or '0' if the ping failed.

Factory Reset

If you set your WICED Feather modules into an unknown state of encounter unexpected behaviour, you can try to
perform a full factory reset or reset the non-volatile config memory using these helper functions.

void factoryReset (void)

Performs a full factory reset on the module, with the following consequences:

Erases all config data in non-volatile memory (NVM)
Erases any user code ('Arduino' code) from flash memory
Resets the device to the same state as when it shipped from the factory (although the current FeatherLib will be
kept intact)
Performs a system reset, which will send the device into DFU mode since no user code is present on the device.

Parameters: None

Returns: Nothing

void nvmReset (void)

Erases the non-volatile config memory on the WICED module, resetting the config settings to factory defaults.

Parameters: None

Returns: Nothing

Hardware Random Number Generator

The STM32F205 includes a HW white-noise random number generator that provides better results than a purely
software based approach.

This can be used to generate random strings or numeric values for security purposes.

bool randomNumber (uint32_t* random32bit)

Assigns a random unsigned 32-bit integer value to 'random32bit'.

Parameters:

random32bit: A pointer to the variable where the random number should be assigned

Returns: 'True' (1) if the random number generation was successful, otherwise 'false' (0).

Real Time Clock

The STM32F205 includes a real time clock, and as soon as you connect to an AP with internet access it will try to
update the RTC clock based on an NTP server.

The RTC can be read in both Linux Epoch (UTC) (https://adafru.it/lNA) time or ISO8601 (https://adafru.it/lNB) format.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 65 of 202

https://www.arduino.cc/en/Reference/EthernetIPAddress
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601

Epoch time returns a 32-bit unsigned integer value representing the number of seconds since 1 January 1970. For
example '1456472597' would convert to:

Fri, 26 Feb 2016 07:43:17 GMT

ISO8601 format timestamps return the time as a specifically formatted string similar to the timestamp below:

2016-02-18T17:12:46.061104

bool getISO8601Time (iso8601_time_t* iso8601_time)

Updates 'iso8601_time' with the current timestamp in ISO8601 format.

Time is based on GMT and will need to be adjusted for your local timezone, depending on your specific location and
any seasonal adjustments (daylight savings time, etc.).

Parameters:

iso8601_time: A pointer to the 'iso8601_time_t' struct that will hold the timestamp data. (The typedef itself is
defined in adafruit_constants.h.)

Returns: 'True' (1) if the timestamp was successfully assigned, otherwise 'false' (0).

ISO8601 timestamps use the following struct (defined in 'adafruit_constants.h') to convert the timestamp into something
that can be printed as a null-terminated string, but also easily manipulated in code:

uint32_t getUtcTime (void)

Returns the current 'Epoch' time (the number of seconds since the 1 January 1970).

Time is based on GMT and will need to be adjusted for your local timezone, depending on your specific location and
any seasonal adjustments (daylight savings time, etc.).

typedef struct ATTR_PACKED
{
 char year[4]; /**< Year */
 char dash1; /**< Dash1 */
 char month[2]; /**< Month */
 char dash2; /**< Dash2 */
 char day[2]; /**< Day */
 char T; /**< T */
 char hour[2]; /**< Hour */
 char colon1; /**< Colon1 */
 char minute[2]; /**< Minute */
 char colon2; /**< Colon2 */
 char second[2]; /**< Second */
 char decimal; /**< Decimal */
 char sub_second[6]; /**< Sub-second */
 char Z; /**< UTC timezone */

 char nullterm; // not part of the format, make printf easier
} iso8601_time_t;

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 66 of 202

Parameters: None

Returns: A 32-bit unsigned integer representing the number of seconds since the 'Epoch', or 1 January 1970.

TLS Root Certificate Management

Connecting to secure TLS/SSL based servers requires a root certificate to verify that the certificate data from the
remote server is valid. A set of common root certificates is included in the Featherlib by default, but custom certificates
can also be added to the chain via the .addRootCA helper function, described below.

See the AdafruitTCP documention for more information on TLS and connecting to secure servers.

Default Root Certificates

By default, the following root certificates are included in Featherlib, meaning you only need to add a root certificate
authority if it isn't included in the list below.

These default root certificates cover many common websites without any additional effort on your part:

Baltimore CyberTrust Root

adafruit-download.s3.amazonaws.com (may include other Amazon S3 servers)

DigiCert High Assurance EV Root CA

twitter.com
facebook.com
github.com

GeoTrust Global CA

google.com

GeoTrust Primary Certification Authority - G3

adafruit.com

Starfield Services Root Certificate Authority - G2

aws.amazon.com

bool useDefaultRootCA (bool enabled)

Enables the default list of root CAs in FeatherLib.

Note: These will be enabled automatically by default if you try to use the .connectSSL functions without having
previously added any custom root CAs via .addRootCA. This function is provided primarily to disable the default root
certificates since they consume a reasonable chunk of heap memory.

Parameters:

enabled: Set this to 'true' (1) to enable the default root CA list, or 'false' (0) to disable them.

Returns: 'True' (1) if the operation succeeded, otherwise 'false' (0).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 67 of 202

bool initRootCA (void)

This function allocates memory for the default list of root certificates and any custom root certificates present.

Normally this function never needs to be called directly, and will be call on an as-needed bases by .addRootCA or
.connectSSL. It is provided as a public function so that other classes can have access to it (AdafruitTCP, etc.).

Parameters: None

Returns: 'True' (1) if the root CA initialisation was successful, otherwise 'false' (0).

bool addRootCA (uint8_t const* root_ca, uint16_t len)

This will add the supplied root certificate to the default root certificate list. The combined root list (default plus custom
root CAs) will be used when trying to verify any certificate chains provided by a remote secure server.

The root certificate chain suppied via 'root_ca' can contain more than one certificate, but must be a byte array
converted from a binary .der file, generated using the python tool included in the '/tools/pycert' folder of the board
support package.

Parameters:

root_ca: A pointer to the .der file byte array generated by `/tools/pycert/pycert.py'
len: The size in bytes of the .der byte array

Returns: 'True' (1) if the root certificate chain was successfully set, otherwise 'false' (0).

bool clearRootCA (void)

Clears any root certificates currently used by the system (freeing up associated heap memory in FeatherLib).

Parameters: None

Returns: 'True' (1) if the operation succeeded, otherwise 'false' (0).

Print Helpers

The following functions are provided to print out common data and simplify user sketches:

void printVersions (Print& p = Serial)

Displays the bootloader and firmware versions used by the WICED Feather in the following order:

Bootloader version
Broadcom WICED SDK version
FeatherLib version
Arduino (User Code) version

The default root CA list will be enabled by default unless Feather.enableRootCA(false) or
Feather.clearRootCA() is called explicitly.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 68 of 202

Parameters:

p: The 'Print' implementation to use. Leave this field empty and it will default to 'Serial' which is used for the Serial
Monitor output.

Returns: Nothing.

void printNetwork (Print& p = Serial)

Displays the following network details when connected to an AP:

SSID Name
SSID Encryption Method
MAC Address
Local IP Address
Gateway Address
Subnet Mask

Parameters:

p: The 'Print' implementation to use. Leave this field empty and it will default to 'Serial' which is used for the Serial
Monitor output.

Returns: Nothing.

void printEncryption (int32_t enc, Print& p = Serial)

Displays a string that corresponds to the specified encryption type (see .encryptionType elsewhere in this class):

Parameters:

enc: The security encryption type used by the AP
p: The 'Print' implementation to us. Leave this field empty and it will default to 'Serial' which is used for the Serial
Monitor output.

Returns: Nothing

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 69 of 202

AdafruitFeather: Profiles
The WICED Feather API allows you to store 'profiles', which contain all of the settings about a specific AP (access
point).

This means that you only need to enter your AP details once, and once connected you can store them in non-volatile
config memory for later use, simplifying project management and speeding up connection time in certain instances.

This is useful in situations where your project might move from one physical location to another, and the AP will change
between locations (for example at home and at the office).

Connecting via Profiles

To connect to an AP using the stored profile data, simply call the bare Feather.connect() function with no parameters.
 This will attempt to connect to the profiles stored in non-volatile memory from the first entry to the last, and will return
false is we were unable to connect to any of the stored APs.

Profiles API

The profile management API includes the following functions (defined as part of the AdafruitFeather class which is
normally available as Feather.*):

bool saveConnectedProfile (void)

Saves the currently connected access point details as a Profile. You must be connected when calling this functions.

Parameters: None

Returns: 'true' (1) if the profile was successfully added, otherwise 'false' (0).

bool addProfile (char* ssid)

Saves the specified open SSID to the profile list. This function should only be used with open access points that have
no security/encoding enabled.

Parameters:

ssid: A string containing the access point's SSID/name.

Returns: 'true' (1) if the profile was successfully added, otherwise 'false' (0).

Up to FIVE profiles can be stored at a time in non-volatile memory.

bool saveConnectedProfile (void); // Save currently connected AP
bool addProfile (char* ssid); // Open
bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type);
bool removeProfile (char* ssid);
bool checkProfile (char* ssid); // Check if profile exists
void clearProfiles (void);
char* profileSSID (uint8_t pos);
int32_t profileEncryptionType (uint8_t pos);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 70 of 202

bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type)

Saves the specified secure SSID to the profile list. This function should not be used with open access points.

Parameters:

ssid: A string containing the access point's SSID/name.
key: A string containing the pass key for the SSID
enc_type: The security encoding type for the access point, which can be one of the following values:

Encoding Types (wl_enc_type_t):

ENC_TYPE_WEP
WEP security with open authentication
ENC_TYPE_WEP_SHARED
WEP security with shared authentication
ENC_TYPE_WPA_TKIP
WPA security with TKIP
ENC_TYPE_WPA_AES
WPA security with AES
ENC_TYPE_WPA_MIXED
WPA security with AES and TKIP
ENC_TYPE_WPA2_TKIP
WPA2 security with TKIP
ENC_TYPE_WPA2_AES
WPA2 security with AES
ENC_TYPE_WPA2_MIXED
WPA2 security with TKIP and AES
ENC_TYPE_WPA_TKIP_ENT
WPA enterprise security with TKIP
ENC_TYPE_WPA_AES_ENT
WPA enterprise security with AES
ENC_TYPE_WPA_MIXED_ENT
WPA enteprise security with TKIP and AES
ENC_TYPE_WPA2_TKIP_ENT
WPA2 enterprise security with TKIP
ENC_TYPE_WPA2_AES_ENT
WPA2 enterprise security with AES
ENC_TYPE_WPA2_MIXED_ENT
WPA2 enterprise security with TKIP and AES
ENC_TYPE_WPS_OPEN
WPS with open security
ENC_TYPE_WPS_SECURE
WPS with AES security
ENC_TYPE_IBSS_OPEN
BSS with open security

Returns: 'true' (1) if the profile was successfully added, otherwise 'false' (0).

bool removeProfile (char* ssid)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 71 of 202

Removes the profile with the matching ssid from non-volatile memory.

Parameters:

ssid: A string containing the access point's SSID/name.

Returns: 'true' (1) if the profile was successfully found and removed, otherwise 'false' (0).

void clearProfiles (void)

Clears all profiles from non-volatile memory.

Parameters: None

Returns: Nothing

char* profileSSID (uint8_t pos);

Returns a string containing the SSID name for the profile stored at the specified position.

Parameters:

pos: The position in NVM for the profile, which can be a value between 0 and 4 (since the position is a zero-
based integer).

Returns: NULL if no profile was found at the specified 'pos', otherwise a string corresponding to SSID name for the
stored profile.

int32_t profileEncryptionType (uint8_t pos);

Returns the `wl_enc_type_t` value for the profile stored at the specified position.

Parameters:

pos: The position in NVM for the profile, which can be a value between 0 and 4 (since the position is a zero-
based integer).

Returns: '-1' if no profile was found at the specified 'pos', otherwise an integer corresponding to one of the entries in
'wl_enc_type_t' (see the list of options in addProfile above).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 72 of 202

AdafruitTCP
AdafruitTCP makes it easier to work with raw TCP sockets. You can open sockets -- including SSL based secure socket
connections -- and send and receive data using a few basic commands.

The class also and exposes two convenient (optional) callbacks:

Data Received Callback: Fires whenever incoming data is available (which can then be read via the .read() and
related commands)
Disconnect Callback: Fires whenever the TCP server cause you to disconnect

You're also free to 'poll' for incoming data and connection status, but these callbacks help keep your TCP code easy to
understand and more maintainable as your project grows in complexity.

TCP Socket API

The AdafruitTCP class includes the following functions:

Packet Buffering

The AdafruitTCP class includes the option to enable or disable packet buffering.

If packet buffering is enabled, outgoing data will be buffered until the buffer is full (~1500 bytes) or until .flush() is called
to manually force the buffered data to be sent.

If packet buffering is disabled, any write commands will send the data immediately, regardless of the packet or data
size. This ensure writes happen right away, but at the cost of slower overall throughput since data can't be grouped
together into larger packets.

// Misc Functions
void usePacketBuffering (bool enable);
void tlsRequireVerification (bool required);
uint32_t getHandle (void);

// Client API
virtual int connect (IPAddress ip, uint16_t port);
virtual int connect (const char * host, uint16_t port);
virtual int connectSSL (IPAddress ip, uint16_t port);
virtual int connectSSL (const char* host, uint16_t port);
virtual uint8_t connected (void);
virtual void stop (void);

// Stream API
virtual int read (void);
virtual int read (uint8_t * buf, size_t size);
virtual size_t write (uint8_t);
virtual size_t write (const uint8_t *content, size_t len);
virtual int available (void);
virtual int peek (void);
virtual void flush (void);

// Set callback handlers
void setReceivedCallback (tcpcallback_t fp);
void setDisconnectCallback (tcpcallback_t fp);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 73 of 202

void usePacketBuffering (bool enable)

This will enable or disable packet buffering with AdafruitTCP data.

Parameters:

enable: Set this to 'true' (1) to enable packet buffering, otherwise 'false' (0)

Returns: Nothing

TLS/SSL Certificate Verification

When opening a secure TCP connection to a TCP server, the client and server will begin to communicate with each
other in an open connection to choose their cipher suite (AES, etc.), and the server will then send the client it's
certificate and public key data to start the secure connection.

Normally at this point, the client will verify the server's certificate using it's root certificate chains. If verification is OK,
the connection will continue, otherwise the connection will be rejected since the server has probably provided a false
or invalid certificate and can't be trusted.

The problem with this approach on small embedded systems is that it takes a great deal of space (in embedded terms)
to store all root certificate chains to verify server certificates against all certificate issuing authorities. We do store a
default list of the most common root certificate chains, but it isn't possible on a small MCU with limited flash storage
space to store every possible root certificate option.

The WICED Feather proposes two solutions to this problem, depending on if you prefer a more secure or a simpler
solution:

Verifying Certificates with the WICED Feather (Safer)

Instead of storing all root certificates, the WICED Feather allows you to generate a certificate chain for a specific
domain, and then use that in your sketch, which typically requries 1-4KB of flash memory or less per domain.

This is the most secure choice but requires some additional work on your part, and you have to know in advance which
sites you will access.

The procedure to convert, load and use a custom root certificate list is as follows:

1. You use a python script (provided in the '/tools/pycert' folder) to read the root certificate data for your target
domain. The script then converts the binary .der format data into a byte array in a C header (.h) file.

2. You then pass the root certificate data into the WICED API via Feather.addRootCA (from AdafruitFeather), which
allows you to add your root certificate chain to the list of default certificates used when verifying the target
domain

3. You can then enable certificate verification via tlsRequireVerification(true) in this class, which means that all
server certificates must pass verification against the root certificate list on the WICED Feather or the certificate
and connection will be rejected.

Ignoring Certificate Verification (Easier)

If you aren't able to store the certificate data for a specific site, or don't know which sites you will access, you can
also ignore the verification process which has the effect of accepting every certificate as valid.

By default packet buffering is DISABLED in AdafruitTCP

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 74 of 202

This still allows for an encrypted connection (using AES, etc.), but there is no guarantee that the server you are talking
to is actually the server you think you're talking to, making it a less secure option.

The approach you take will depend on your project requirements, but in either case you can indicate to the WICED
Feather API whether you want to verify server certificates via the following function:

Default Root Certificates

By default, the following root certificates are included in Featherlib, meaning you only need to add a root certificate
authority if it isn't included in the list below.

These default root certificates cover many common websites without any additional effort on your part:

Baltimore CyberTrust Root

adafruit-download.s3.amazonaws.com (may include other Amazon S3 servers)

DigiCert High Assurance EV Root CA

twitter.com
facebook.com
github.com

GeoTrust Global CA

google.com

GeoTrust Primary Certification Authority - G3

adafruit.com

Starfield Services Root Certificate Authority - G2

aws.amazon.com

void tlsRequireVerification (bool required)

Indicates whether the certificate data provided by the remote server should be verified against the local root certificate
list or not. (Note: you can add new records to the root certificate list is set in the AdafruitFeather class via
'Feather.addRootCA'.)

Parameters:

required: Set this to 'true' (1) if certificate validation is required, or 'false' (0) if no verification is required (meaning
that every certificate provided by a remote server will be considered valid!).

Returns: Nothing

Socket Handler Functions

By default certificate verification is enabled on WICED Feather boards. You can disable verification via
'tlsRequireVerification(false)', which will cause any certificate to be accepted, but it will also allow man-in-the-
middle type attacks.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 75 of 202

In specialised cases (mostly when implementing sub-classes of AdafruitTCP) you may need access to the 'handle' for
the TCP socket. The .getHandle function provides access to this.

void getHandle (void)

Returns the internal TCP socket handler value that uniquely identifies this TCP socket. This might be necessary when
creating special sub-classes based on AdafruitTCP.

Parameters: None

Returns: The uint32_t socket handler value that uniquely identifies this TCP socket.

Client API

The Client API (https://adafru.it/lFj) includes the following functions to connect to a TCP server:

int connect (IPAddress ip, uint16_t port)

Attempts to connect to the specified IP address and port

Parameters:

ip: The IPAddress (https://adafru.it/lGd) where the TCP server is located
port: The port number to connect to (0..65535)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

int connect (const char * host, uint16_t port)

Attempts to connect to the specified domain name and port

Parameters:

host: A string containing the domain name to connect to
port: The port number to connect to (0..65536)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

int connectSSL (IPAddress ip, uint16_t port)

Connects to a secure server using SSL/TLS at the specified IP address and port.

Parameters:

ip: The IPAddress (https://adafru.it/lGd) where the TCP server is located
port: The port number to connect to (0..65536)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

If certificate verification fails when trying to connect to a secure server you will get
ERROR_TLS_UNTRUSTED_CERTIFICATE (5035).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 76 of 202

https://www.arduino.cc/en/Reference/ClientConstructor
https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/EthernetIPAddress

Note: A set of common root certificates are already included in the WICED Feather SDK, so most HTTPS websites will
work out of the box, but if you need to add a new root certificate chain the TLS/certificate data is set using the
following function in the Adafruit Feather class (accessible as `Feather.addRootCA(...)`):

bool addRootCA(uint8_t const* root_certs_der, uint16_t len);

int connectSSL (const char* host, uint16_t port)

Attempts to connect to a secure server using SSL/TLS at the specified domain name and port.

Parameters:

host: A string containing the domain name to connect to
port: The port number to connect to (0..65536)

Returns: 'true' (1) if the connection was successfully established, otherwise 'false' (0).

Note: A set of common root certificates are already included in the WICED Feather SDK, so most HTTPS websites will
work out of the box, but if you need to add a new root certificate chain the TLS/certificate data is set using the
following function in the Adafruit Feather class (accessible as `Feather.addRootCA(...)`):

bool addRootCA(uint8_t const* root_certs_der, uint16_t len);

uint8_t connected (void)

Indicates whether we are currently connected to the TCP server or not

Parameters: None

Returns: 'true' (1) if we are currently connected to the TCP server, otherwise 'false' (0).

void stop (void)

Closes the current connection to the TCP server (if a connection is open).

Parameters: None

Returns: Nothing

Stream API

AdafruitTCP implements the Stream (https://adafru.it/lGe) class, with the following method overrides present in
AdafruitTCP:

int read (void)

Reads the first available byte from the data buffer (if any data is available).

If certificate verification fails when trying to connect to a secure server you will get
ERROR_TLS_UNTRUSTED_CERTIFICATE (5035).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 77 of 202

https://www.arduino.cc/en/Reference/Stream

Parameters: None

Returns: The first byte of incoming data available, or -1 if no data is available.

int read (uint8_t * buf, size_t size)

Reads up to the specified number of bytes from the data buffer (if any data is available).

Parameters:

buf: A pointer to the buffer where data should be written if any data is available
size: The maximum number of bytes to read and copy into buf.

Returns: The actual number of bytes read back, and written in buf.

size_t write (uint8_t data)

Transmits a single byte to the TCP Server (or into the outgoing buffer until it can be sent if buffering is enabled).

Parameters:

data: The byte of data to transmit

Returns: The number of bytes written. It is normally not necessary to read this value.

size_t write (const uint8_t *content, size_t len)

Transmits a number of bytes to the TCP Server (or into the outgoing buffer until the data can be sent if buffering is
enabled).

Parameters:

content: A pointer to the buffer containing the data to send
len: The number of bytes contained in content

Returns: The number of bytes successfully written.

int available (void)

Checks the number of bytes available in the incoming data buffer.

Parameters: None

Returns: The number of bytes available in the incoming data buffer, or 0 if no data is available.

int peek (void)

Reads the first available byte from the incoming data buffer without removing it from the buffer.

Parameters: None

Returns: The value of the first available byte, or -1 if no data is available.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 78 of 202

void flush (void)

Forces any buffered data to be transmitted to the TCP server, regardless of the size of the content.

Parameters: None

Returns: Nothing

Callback API

To make working with TCP sockets easier, a simple callback API is available in AdafruitTCP based on the following
functions:

void setReceivedCallback (tcpcallback_t fp)

Registers the data received callback handler.

Parameters:

fp: The name of the function that will be executed when received data is available from the TCP server. See the
example below for details on the function signature.

Returns: Nothing

void setDisconnectCallback (tcpcallback_t fp)

Registers the disconnect callback handler (fired when you are disconnected from the TCP server).

Parameters:

fp: The name of the function that will be executed when you are disconnected from the TCP server. See the
example below for details on the function signature.

Returns: Nothing

Callback Function Signatures

The data received and disconnect callbacks both require a specific function definition to work. The function names
('receive_callback' and 'disconnect_callback') can change, but the exact signatures are shown below:

You then register the callbacks with the dedicated set callback functions:

void receive_callback (void);
void disconnect_callback (void);

Make sure you register the callbacks BEFORE calling the .connect function!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 79 of 202

To read incoming data in the receive callback handler, you need to use the pTCP pointer, as shown in the sample code
below:

Example: Callback Based HTTP Request

The following example shows how you can register and use the two TCP callbacks, and performs a simple TCP
operation. It opens a TCP socket to an HTTP server using port 80, requests a page, displays any incoming response
data, and then waits for the HTTP server to close the TCP connection (which will show up as a disconnect callback):

// Set the callback handlers for RX and disconnect
tcp.setReceivedCallback(receive_callback);
tcp.setDisconnectCallback(disconnect_callback);

void receive_callback(void)
{
 int c;

 // Print out any bytes available from the TCP server
 while ((c = tcp.read())> 0)
 {
 Serial.write((isprint(c) || iscntrl(c)) ? ((char)c) : '.');
 }
}

void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-------------------");
 Serial.println("DISCONNECT CALLBACK");
 Serial.println("-------------------");
 Serial.println();
}

#include <adafruit_feather.h>

#define WLAN_SSID "SSID"
#define WLAN_PASS "PASSWORD"
#define WLAN_SECURITY ENC_TYPE_AUTO

#define TCP_DOMAIN "www.adafruit.com"
#define TCP_FILENAME "/testwifi/index.html"
#define TCP_PORT 80

void receive_callback (void);
void disconnect_callback (void);

AdafruitTCP tcp;

void setup()
{
 Serial.begin(115200);

 // Wait for Serial port to connect. Needed for native USB port only
 while (!Serial) { delay(1); }

 // Attempt to connect to the AP using the specified SSID/key/encoding

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 80 of 202

 // Attempt to connect to the AP using the specified SSID/key/encoding
 if (!Feather.connect(WLAN_SSID, WLAN_PASS, WLAN_SECURITY))
 {
 err_t err = Feather.errno();
 Serial.println("Connection Error:");
 switch (err)
 {
 case ERROR_WWD_ACCESS_POINT_NOT_FOUND:
 // SSID wasn't found when scanning for APs
 Serial.println("Invalid SSID");
 break;
 case ERROR_WWD_INVALID_KEY:
 // Invalid SSID passkey
 Serial.println("Invalid Password");
 break;
 default:
 // The most likely cause of errors at this point is that
 // you are just out of the device/AP operating range
 Serial.print(err);
 Serial.print(":");
 Serial.println(Feather.errstr());
 break;
 }
 // Wait around here forever!
 while(1);
 }

 // Optional: Disable TLS certificate verification (accept any server)
 Feather.tlsRequireVerification(false);

 // Optional: Set the default TCP timeout to 10s
 tcp.setTimeout(10000);

 // Set the callback handlers for RX and disconnect
 tcp.setReceivedCallback(receive_callback);
 tcp.setDisconnectCallback(disconnect_callback);

 // Try to connect to the HTTP Server
 if (tcp.connect(TCP_DOMAIN, TCP_PORT))
 {
 Serial.println("Connected to server");
 // Make a basic HTTP request
 tcp.printf("GET %s HTTP/1.1\r\n", TCP_FILENAME);
 tcp.printf("host: %s\r\n", TCP_DOMAIN);
 tcp.println();
 }
 else
 {
 Serial.printf("TCP connection failed: %s (%d)", tcp.errstr(), tcp.errno());
 Serial.println();
 while(1);
 }
}

void loop()
{
 // put your main code here, to run repeatedly:
}

void receive_callback(void)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 81 of 202

{
 int c;

 // Print out any bytes available from the TCP server
 while ((c = tcp.read())> 0)
 {
 Serial.write((isprint(c) || iscntrl(c)) ? ((char)c) : '.');
 }
}

void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-------------------");
 Serial.println("DISCONNECT CALLBACK");
 Serial.println("-------------------");
 Serial.println();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 82 of 202

AdafruitTCPServer
This class allows you to create a simple TCP based server to communicate with other TCP clients.

Constructor

AdafruitTCPServer has the following constructor:

Parameters:

port: The port to use for the TCP server (1..65535)

Functions

The following public functions are defined as part of the class:

bool begin (void)

Starts the TCP server and begins listening for connections.

Parameters: None

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

AdafruitTCP accept (void)

Accepts a new connection with a Client, returning an instance of the AdafruitTCP class to handle the client details.

Parameters: None

Returns: An instance of the AdafruitTCP class that can be used to deal with the client reads and writes.

AdafruitTCP available (void)

This function is an alias for the .accept function described above.

void stop (void)

Stops the TCP server.

This class is still a work in progress and may undergo significant changes in a future version of the WICED
Feather library. It should be considered experimental for now.

AdafruitTCPServer(uint16_t port)

bool begin (void)
AdafruitTCP accept (void)
AdafruitTCP available (void)
void stop (void)

void setConnectCallback (tcpserver_callback_t fp)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 83 of 202

Parameters: None

Returns: Nothing.

void setConnectCallback (tcpserver_callback_t fp)

Sets the TCP server callback event handler function for any incoming connection requests.

Parameters:

fp: The function that will be used to handling incoming connection requests.

Returns: Nothing.

The connect callback function handler has the following syntax:

Example

The following example will listen for connection requests on port 80 and echo back any data that is received. The
connection logic happens inside the connection request callback handler.

/**/
/*!
 @brief This callback is fired when there is a connection request from
 a TCP client. Use accept() to establish the connection and
 retrieve the client 'AdafruitTCP' instance.
*/
/**/
void connect_request_callback(void)
{
 uint8_t buffer[256];
 uint16_t len;

 AdafruitTCP client = tcpserver.available();

 if (client)
 {
 // read data
 len = client.read(buffer, 256);

 // Echo data back to the TCP client
 client.write(buffer, len);

 // call stop() to free memory in the client class
 client.stop();
 }
}

 #include <adafruit_feather.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define PORT 80 // The TCP port to use

AdafruitTCPServer tcpserver(PORT);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 84 of 202

/**/
/*!
 @brief This callback is fired when there is a connection request from
 a TCP client. Use accept() to establish the connection and
 retrieve the client 'AdafruitTCP' instance.
*/
/**/
void connect_request_callback(void)
{
 uint8_t buffer[256];
 uint16_t len;

 AdafruitTCP client = tcpserver.available();

 if (client)
 {
 // read data
 len = client.read(buffer, 256);

 // Print data along with peer's info
 Serial.print("[RX] from ");
 Serial.print(client.remoteIP());
 Serial.printf(" port %d : ", client.remotePort());
 Serial.write(buffer, len);
 Serial.println();

 // Echo back
 client.write(buffer, len);

 // call stop() to free memory by Client
 client.stop();
 }
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the serial port to connect. Needed for native USB port only.
 while (!Serial) delay(1);

 Serial.println("TCP Server Example (Callbacks)\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 85 of 202

 // Tell the TCP Server to auto print error codes and halt on errors
 tcpserver.err_actions(true, true);

 // Setup callbacks: must be done before begin()
 tcpserver.setConnectCallback(connect_request_callback);

 // Starting server at defined port
 tcpserver.begin();

 Serial.print("Listening on port "); Serial.println(PORT);
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{

}

/**/
/*!
 @brief Connect to the pre-defined access point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 86 of 202

AdafruitUDP
AdafruitUDP makes it easy to work with raw UDP sockets. It includes a convenient callback for incoming data, and a
number of helper functions to read and write data over a UDP socket.

You're free to 'poll' for incoming data and connection status, but the 'data received' callback fires whenever incoming
data is available, which can then be read via the .read() and related commands. Callbacks aren't mandatory, but help
keep your code easy to understand and more maintainable as your project grows in complexity.

UDP Socket API

The AdafruitUDP class includes the following functions:

UDP API

The following functions are primarilly based on the Arduino EthernetUDP (https://adafru.it/lGA) class and enable you to
work with UDP connections and packets.

uint8_t begin (uint16_t port)

Initialises the AdafruitUDP class for the specified local port.

Parameters:

port: The local port number to listen on (0..65535)

Returns: 1 if successful, 0 if there are no sockets available to be used.

void stop (void)

Disconnects from the UDP server, and releases any resources used during the UDP session.

// UDP API
virtual uint8_t begin (uint16_t port);
virtual void stop (void);
virtual int beginPacket (IPAddress ip, uint16_t port);
virtual int beginPacket (const char *host, uint16_t port);
virtual int endPacket (void);
virtual int parsePacket (void);
virtual IPAddress remoteIP (void);
virtual uint16_t remotePort (void);

// Stream API
virtual int read (void);
virtual int read (unsigned char* buffer, size_t len);
virtual int read (char* buffer, size_t len);
virtual int peek (void);
virtual int available (void);
virtual void flush (void);
virtual size_t write (uint8_t byte);
virtual size_t write (const uint8_t *buffer, size_t size);

// Callback
void setReceivedCallback (udpcallback_t fp);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 87 of 202

https://www.arduino.cc/en/Reference/Ethernet

Parameters: None

Returns: Nothing

int beginPacket (IPAddress ip, uint16_t port)

Starts a UDP connection to write data to the specified remote IP address and port.

Parameters:

ip: The remote IPAddress (https://adafru.it/lGd) where the UDP server is located
port: The remote port number to connect to (0..65535)

Returns: '1' if successful, '0' if there was a problem connecting to the specified IP address or port.

int beginPacket (const char *host, uint16_t port)

Starts a UDP connection to write data to the specified domain name and remote port.

Parameters:

host: A string containing the domain name to connect to
port: The port number to connect to (0..65536)

Returns: '1' if the connection was successfully established, otherwise '0'.

int endPacket (void)

This function must be called after writing UDP data to the remote server.

Parameters: None

Returns: '1' if the packet was sent successfully, otherwise '0'.

int parsePacket (void)

Checks whether a UDP packet is available, and returns the size of the UDP packet as a return value.

Parameters: None

Returns: The number of bytes available in the buffered UDP packet.

IPAddress remoteIP (void)

Returns the IP address of the remote UDP server.

You must call this function BEFORE reading any data from the buffer via AdafruitUDP.read()!

AdafruitUDP.parsePacket() must be called BEFORE this function.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 88 of 202

https://www.arduino.cc/en/Reference/EthernetIPAddress

Parameters: None

Returns: The IPAddress (https://adafru.it/lGd) of the remote UDP server/connection.

uint16_t remotePort (void)

Returns the port for the remote UDP server.

Parameters: None

Returns: The port of the remote UDP server/connection.

Stream API

The following functions are based on the Stream (https://adafru.it/lGe) class that Arduino
EthernetUDP (https://adafru.it/lGA) implements.

int read (void)

Reads the first available byte in the UDP buffer.

Parameters: None

Returns: The first character available in the UDP buffer, or 'EOF' if no data is available.

int read (unsigned char* buffer, size_t len)
int read (char* buffer, size_t len)

These two identical functions (other than the type used for the 'buffer') will read up to 'len' bytes from the UDP
response data, copying them into the buffer provided in the first argument of this function.

Parameters:

buffer: A pointer to the buffer where the UDP data will be copied
len: The maximum number of bytes to read

Returns:

The actual number of bytes read from the UDP data and copied into 'buffer'
'0' if no data was read or available
'-1' if an error occured

AdafruitUDP.parsePacket() must be called BEFORE this function.

This function must be called AFTER AdafruitUDP.parsePacket()!

This function must be called AFTER AdafruitUDP.parsePacket()!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 89 of 202

https://www.arduino.cc/en/Reference/EthernetIPAddress
https://www.arduino.cc/en/Reference/Stream
https://www.arduino.cc/en/Reference/Ethernet

int peek (void)

Reads a single byte from the UDP response buffer without advancing to the next position in the buffer.

Parameters: None

Returns: The first byte available in the UDP buffer, or '-1' if no data is available.

int available (void)

Returns the number of bytes available to be read in the UDP buffer.

Parameters: None

Returns: The number of bytes available to be read in the UDP buffer, otherwise '0' if the read buffer is empty.

void flush (void)

This function will flush the buffer of any outgoing data, and return when the buffered data has been sent and the buffer
is empty.

Parameters: None

Returns: Nothing

size_t write (uint8_t byte)

Writes a single byte to the remote UDP server. This function must be placed after AdafruitUDP.beginPacket() and
before AdafruitUDP.endPacket(). The packet will not be sent until .endPacket is called!

Parameters:

byte: The single byte to write to the transmit buffer

Returns: The number of bytes written.

size_t write (const uint8_t *buffer, size_t size)

Writes the specified 'buffer' to the remote UDP server. This function must be placed after AdafruitUDP.beginPacket()
and before AdafruitUDP.endPacket(). The packet will not be sent until .endPacket is called!

Parameters:

buffer: The buffer where the data to transmit is stored
size: The number of bytes contained in 'buffer'

This function must be called AFTER AdafruitUDP.parsePacket()!

This function must be called AFTER AdafruitUDP.parsePacket()!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 90 of 202

Returns: The number of bytes written.

Callback Handlers

AdafruitUDP supports a 'read' callback that will fire every time incoming UDP data is recieved over the open socket
connection.

The callback function has the following signature (although you are free to choose a different name if you wish to):

Before you can use the callback function, you need to register your callback handler (using the function signature in the
paragraph above).

You register the callback with the following function:

void setReceivedCallback (udpcallback_t fp)
Registers the function used to process 'data received' callbacks.

Parameters:

fp: The name of the function where callback events should be redirected to

Returns: Nothing

Examples

The examples below illustration some basic UDP concepts to help you understand the class described above.

UDP Echo Server

The following example will listen on port 8888 for any incoming UDP requests, and then echo them back to the
requesting device via the 'received' callback handler:

void received_callback(void);

See the example section at the bottom of this page for details on using the data received callback in the real
world.

#include <adafruit_feather.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define LOCAL_PORT 8888

AdafruitUDP udp;

char packetBuffer[255];

bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 91 of 202

 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

void setup()
{
 Serial.begin(115200);

 // wait for Serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("UDP Echo Callback Example");
 Serial.println();

 while(!connectAP())
 {
 delay(500);
 }

 // Tell the UDP client to auto print error codes and halt on errors
 udp.err_actions(true, true);
 udp.setReceivedCallback(received_callback);

 Serial.printf("Openning UDP at port %d ... ", LOCAL_PORT);
 udp.begin(LOCAL_PORT);
 Serial.println("OK");

 Serial.println("Please use your PC/mobile and send any text to ");
 Serial.print(IPAddress(Feather.localIP()));
 Serial.print(" UDP port ");
 Serial.println(LOCAL_PORT);
}

void loop()
{

}

/**/
/*!
 @brief Received something from the UDP port
*/
/**/
void received_callback(void)
{
 int packetSize = udp.parsePacket();

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 92 of 202

 if (packetSize)
 {
 // Print out the contents with remote information
 Serial.printf("Received %d bytes from ", packetSize);
 Serial.print(IPAddress(udp.remoteIP()));
 Serial.print(" : ");
 Serial.println(udp.remotePort());

 udp.read(packetBuffer, sizeof(packetBuffer));
 Serial.print("Contents: ");
 Serial.write(packetBuffer, packetSize);
 Serial.println();

 // Echo back contents
 udp.beginPacket(udp.remoteIP(), udp.remotePort());
 udp.write(packetBuffer, packetSize);
 udp.endPacket();
 }
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 93 of 202

AdafruitHTTP
AdafruitHTTP helps make working with HTTP requests easier, including HTTPS based servers with TLS certificates.

It includes convenient callbacks for incoming data, as well as helper functions to deal with HTTP response headers,
response codes, and other HTTP specific details.

AdafruitHTTP API

The AdafruitHTTP class has the following public functions:

HTTP Headers

The follow functions are provided as helpers working with 'header' entries in your HTTP requests.

bool addHeader (const char* name, const char* value)

Adds a new header name/value pair to the HTTP request.

Parameters:

name: A null-terminated string representing the 'name' in the header name/value pair.
value: A null-terminated string representing the 'value' in the name/value pair.

Returns: 'True' (1) if the header was successfully added, otherwise 'false' (0).

bool clearHeaders (void)

Clears all user-defined headers in the pending HTTP request.

Parameters: None

Returns: 'True' (1) if the headers were successfully cleared, otherwise 'false' (0).

HTTP GET Requests

bool addHeader (const char* name, const char* value);
bool clearHeaders (void);

bool get (char const *url);
bool get (char const * host, char const *url);

bool post (char const *url, char const* encoded_data);
bool post (char const * host, char const *url, char const* encoded_data);

Up to ten (10) header name/value pairs can be inserted into your HTTP request.

// Setup the HTTP request with any required header entries
http.addHeader("User-Agent", "curl/7.45.0"); // Simulate curl
http.addHeader("Accept", "text/html");
http.addHeader("Connection", "keep-alive");

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 94 of 202

The following functions enable you to send HTTP GET requests to an HTTP server:

bool get (char const* url)

This is a shortcut for the function below and uses the 'host' specified in .connect instead of re-entering it in the get
request. See below for details.

bool get (char const* host, char const* url)

Sends a GET request to the specified host and url.

Parameters:

host: A null-terminated string containing the host name for the HTTP server (ex. "www.adafruit.com"). This is
normally the same as the host used in .connect , but you can also access other host names that resolve to the
same domain or IP such as "learn.adafruit.com" or "io.adafruit.com".
url: The path for the HTTP request (ex. "/home/about.html")

Returns: 'True' (1) if the request was successful, otherwise 'false' (0).

HTTP POST Requests

HTTP POST requests allow you to submit data to the HTTP server via optional encoded arguments in the URL.

The following functions help you work with POST requests:

bool post (char const* url, char const* encoded_data)

This is a shortcut for the function below and uses the 'host' specified in .connect instead of re-entering it in the post
request. See below for details.

bool post (char const* host, char const* url, char const* encoded_data)

This shortcut function will only work if you used .connect with a domain name. It will return an error if you
used .connect with an IP address. Please use the full .get() function below when connecting via an IP address.

// Connect to the HTTP server
http.connect("www.adafruit.com", 80);

// Add the required HTTP header name/value pairs
http.addHeader("User-Agent", "curl/7.45.0"); // Simulate curl
http.addHeader("Accept", "text/html");
http.addHeader("Connection", "keep-alive");

// Send the HTTP GET request
http.get("wifitest.adafruit.com", "/testwifi/index.html");

This shortcut function will only work if you used .connect with a domain name. It will return an error if you
used .connect with an IP address. Please use the full .post() function below when connecting via an IP
address.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 95 of 202

Sends a POST request to the HTTP server at 'host'.

Parameters:

host: A null-terminated string containing the host name for the HTTP server (ex. "www.adafruit.com"). This is
normally the same as the host used in .connect , but you can also access other host names that resolve to the
same domain or IP such as "learn.adafruit.com" or "io.adafruit.com".
url: The path for the HTTP post, minus the encoded arguments ("ex. "/testwifi/testpost.php"
encoded_data: The encoded data to send in the post request (minus the '?' characters, ex.:
"name=feather&email=feather%40adafruit.com").

Returns: 'True' (1) if the post succeeded, otherwise 'false' (0).

HTTP GET Example

The following example shows a simple GET request using callbacks to handle the response from the HTTP server:

Note the "%40" for the '@' symbol in encoded_data above. All non alpha-numeric characters must be
encoded before being transmitted.

// Connect to the HTTP server
http.connect("www.adafruit.com", 80);

// Add the required HTTP header name/value pairs
http.addHeader("User-Agent", "curl/7.45.0"); // Simulate curl
http.addHeader("Accept", "text/html");
http.addHeader("Connection", "keep-alive");

// Send the HTTP POST request
http.post("wifitest.adafruit.com",
 "/testwifi/testpost.php",
 "name=feather&email=feather%40adafruit.com");

/***
 This is an example for our WICED Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_http.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPassword"

#define SERVER "wifitest.adafruit.com" // The TCP server to connect to

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 96 of 202

#define SERVER "wifitest.adafruit.com" // The TCP server to connect to
#define PAGE "/testwifi/index.html" // The HTTP resource to request
#define PORT 80 // The TCP port to use

// Some servers such as Facebook check the user_agent header to
// return data accordingly. Setting 'curl' mimics a command line browser.
// For a list of popular user agents see: http://www.useragentstring.com/pages/useragentstring.php
#define USER_AGENT_HEADER "curl/7.45.0"

int ledPin = PA15;

// Use the HTTP class
AdafruitHTTP http;

/**/
/*!
 @brief TCP/HTTP received callback
*/
/**/
void receive_callback(void)
{
 // If there are incoming bytes available
 // from the server, read then print them:
 while (http.available())
 {
 int c = http.read();
 Serial.write((isprint(c) || iscntrl(c)) ? ((char)c) : '.');
 }
}

/**/
/*!
 @brief TCP/HTTP disconnect callback
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("---------------------");
 Serial.println("DISCONNECTED CALLBACK");
 Serial.println("---------------------");
 Serial.println();

 http.stop();
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial to connect. Needed for native USB port only.
 while (!Serial) delay(1);

 Serial.println("HTTP Get Example (Callback Based)\r\n");

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 97 of 202

 // Print all software versions
 Feather.printVersions();

 // Try to connect to an AP
 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the HTTP client to auto print error codes and halt on errors
 http.err_actions(true, true);

 // Set the callback handlers
 http.setReceivedCallback(receive_callback);
 http.setDisconnectCallback(disconnect_callback);

 // Connect to the HTTP server
 Serial.printf("Connecting to %s port %d ... ", SERVER, PORT);
 http.connect(SERVER, PORT); // Will halt if an error occurs
 Serial.println("OK");

 // Setup the HTTP request with any required header entries
 http.addHeader("User-Agent", USER_AGENT_HEADER);
 http.addHeader("Accept", "text/html");
 http.addHeader("Connection", "keep-alive");

 // Send the HTTP request
 Serial.printf("Requesting '%s' ... ", PAGE);
 http.get(SERVER, PAGE); // Will halt if an error occurs
 Serial.println("OK");
}

/**/
/*!
 @brief The loop function runs over and over again
*/
/**/
void loop()
{
 togglePin(ledPin);
 delay(250);
}

/**/
/*!
 @brief Connect to the defined access point (AP)
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 98 of 202

 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 99 of 202

AdafruitHTTPServer

AdafruitHTTPServer makes it easy to run an HTTP server on the WICED feather in either SoftAP or normal operating
mode, allowing you to implement custom admin consoles, rich data visualisations, or to publish 'always available'
documention for your project right on the board itself.

The helper class allows you to serve static content stored in flash memory (compiled as part of the Arduino sketch
itself), link to files on the 16MBit SPI flash on the WICED Feather (if enabled via the optional solder jumper on the
bottom of the board), or to dynamically generate page content on to go.

AdafruitHTTPServer API

The AdafruitHTTPServer class has the following public functions:

Dynamic page content can be generated with the following callback handler signature, changing the function name to
something appropriate:

Constructor

When declaring a new instance of the AdafruitHTTPServer class you must declare the maximum number of pages that
the server will host (based on available memory since each page record will require a chunk of SRAM to be allocated),
and whether the server in running in normal (non access point) mode, or in AP mode.

You indicate the operating mode via the ' interface ' field, which has one of the following values:

WIFI_INTERFACE_STATION : Default value, meaning this should run in normal non AP mode
WIFI_INTERFACE_AP : Indicates that the HTTP server should run on the AP (Access Point) interface

For example, to use the default (non AP) interface for the HTTP server you might use the following constructor
declaration:

The AdafruitHTTPServer class requires WICED Feather Lib 0.6.0 or higher to run.

AdafruitHTTPServer(uint8_t max_pages, uint8_t interface = WIFI_INTERFACE_STATION);

uint8_t interface (void);

void addPages(HTTPPage const* http_pages, uint8_t count = 1);

bool begin(uint16_t port,
 uint8_t max_clients,
 uint32_t stacksize = HTTPSERVER_STACKSIZE_DEFAULT);

void stop(void);

bool started(void);

void dynamic_page_generator (const char* url,
 const char* query,
 httppage_request_t* http_request);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 100 of 202

Adding Pages

All pages served by the HTTP server must be declared at compile time in a specifically formatted list made up of the
following record types:

1. HTTPPageRedirect Records (Page Redirection Entries)

An HTTPPageRedirect entry redirects all requests for the specified resource to another location, and contains a string
with the page to redirect from and the page to redirect to.

2. HTTPPage Records (Standard Pages)

An HTTPPage is composed of the page path + name, the mime type string (so that the browser knows how to render
the resource), and the reference to the resource itself, which can be one of the following:

A Raw String : The text contained in the specified string will be served as the page contents
An HTTPResource (Static File) : The variable name for the binary contents of a file, converted using the
pyresource (https://adafru.it/qoD) tool. This tool takes binary or text files, and converts them to standard C
headers, with the file contents added as an HTTPResource that AdafruitHTTPServer understands. This allows you
to insert static pages, images or other file types, and the mime type will be used to indicate how the resource
should be rendered in the browser.
A Dynamic Callback Handler : The specified callback handler function will be called when this resource is
requested, and you can generate the page contents dynamically in the callback handler
An SPI Flash Filename : The path and filename to retrieve a file from on the on board SPI flash if enabled (files
can be added to SPI flash over USB mass storage when the SPI flash is enabled via the optional solder jumper on
the bottom of the board).

A sample list of a well formatted page list can be seen below, where raw string data ('hello_html'), and dynamic content
('info_html_generator' and 'file_not_found_generator') are both present, as well as a redirection of root ('/') to
'/hello.html':

const char hello_html[] = "<html><body> <h1>Hello World!</h1> </body></html>";

HTTPPage pages[] =
{
 HTTPPageRedirect("/", "/hello.html"), // Redirect root to hello page
 HTTPPage("/hello.html", HTTP_MIME_TEXT_HTML, hello_html),
};

uint8_t pagecount = sizeof(pages)/sizeof(HTTPPage);

// Declare HTTPServer with max number of pages
AdafruitHTTPServer httpserver(pagecount);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 101 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/pyresource-dot-py

Converting Static Content (HTTPResources)

It's easy to convert a set of static files to resources that AdafruitHTTPServer can use and embed in the sketch itself. For
details see the dedicated pyresource (https://adafru.it/qoD) tool page.

Implementing Dynamic Page Handlers

Two of the HTTPPage entries in the example above ('/info.html' and '/404.html') show how dynamic pages can be
added to the HTTP server.

The dynamic page function prototypes are declared at the top of the code above, and the functions can then be
implemented following the example below, which is called when a 404 error occurs:

void info_html_generator (const char* url, const char* query, httppage_request_t* http_request);
void file_not_found_generator (const char* url, const char* query, httppage_request_t* http_request);

const char hello_html[] = "<html><body> <h1>Hello World!</h1> </body></html>";

HTTPPage pages[] =
{
 HTTPPageRedirect("/", "/hello.html"), // redirect root to hello page
 HTTPPage("/hello.html", HTTP_MIME_TEXT_HTML, hello_html),
 HTTPPage("/info.html" , HTTP_MIME_TEXT_HTML, info_html_generator),
 HTTPPage("/404.html" , HTTP_MIME_TEXT_HTML, file_not_found_generator),
};

Note that we need to indicate the page count in the constructor!
// Declare HTTPServer with max number of pages
uint8_t pagecount = sizeof(pages)/sizeof(HTTPPage);
AdafruitHTTPServer httpserver(pagecount);

The HTTP Server will always redirect to ´/404.html´ when a 404 error occurs (meaning a user requested a
URL that is not available in the HTTPPage list included at compile time). As such, it is a good idea to always
include this page in your project.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 102 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/pyresource-dot-py

Registering the Pages

Once you have create your file list and implemented any dynamic page handlers, you must register your page list with
the class via .addPages .

/**/
/*!
 * @brief HTTP 404 generator. The HTTP Server will automatically redirect
 * to "/404.html" when it can't find the requested url in the
 * list of registered pages
 *
 * The url and query string are already separated when this function
 * is called.
 *
 * @param url url of this page
 * @param query query string after '?' e.g "var=value"
 * @param http_request Details about this HTTP request
*/
/**/
void file_not_found_generator (const char* url, const char* query, httppage_request_t* http_request)
{
 (void) url;
 (void) query;
 (void) http_request;

 httpserver.print("<html><body>");
 httpserver.print("<h1>Error 404 File Not Found!</h1>");
 httpserver.print("
");

 httpserver.print("Available pages are:");
 httpserver.print("
");

 // Show a link list of all available pages:
 httpserver.print("");
 for(int i=0; i<pagecount; i++)
 {
 httpserver.print("");
 httpserver.print(pages[i].url);
 httpserver.print("");
 }
 httpserver.print("");

 httpserver.print("</body></html>");
}

You must call the .addPages function BEFORE calling the .begin function which starts the HTTP server!

.addPages can be called multiple times before .begin if you wish to organize your page list into several sets,
but be sure that the 'max_pages' value used in the constructor is big enough to accommodate all the pages.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 103 of 202

Starting/Stopping the HTTP Server

You can start the HTTP server using the .begin function (and stop it via .stop), with the following function signatures:

port: The port number to expose the HTTP server on (generally 80 or 8080, but this can be any port you wish
and you can even have multiple instances of the HTTP server running on different ports if you wish).
max_clients: The maximum number of client connections to accept before refusing requests. This should
generally be kept as low as possible since there is limited SRAM available on the system. 3 is a good number if
there will be multiple file requests at once, for example.
stacksize: This should generally be left at the default value, but if you require a larger stack for the HTTP server
you can adjust the value here within the limit of available system resources.

Complete Example

The following code shows an example using the AdafruitHTTPServer class, but numerous examples are included as
part of the library in the HTTPServer folder, and the latter may be more up to date.

To use this example, update the WLAN_SSID and WLAD_PASS fields, flash the sketch to the User Code section of
your WICED Feather, and then open the Serial Monitor and wait for the connection to finish. Once connected, the
HTTP server will start and you can navigate to the IP address of your board to browse the pages added below.

// Configure HTTP Server Pages
Serial.println("Adding Pages to HTTP Server");
httpserver.addPages(pages, pagecount);

Serial.print("Starting HTTP Server ... ");
httpserver.begin(PORT, MAX_CLIENTS);
Serial.println(" running");

Make sure you call the .addPages function BEFORE calling the .begin function which starts the HTTP server!

bool begin(uint16_t port,
 uint8_t max_clients,
 uint32_t stacksize = HTTPSERVER_STACKSIZE_DEFAULT);

void stop(void);

/* This example uses the AdafruitHTTPServer class to create a simple webserver */

#include <adafruit_feather.h>
#include <adafruit_http_server.h>

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPassword"

#define PORT 80 // The TCP port to use
#define MAX_CLIENTS 3

int ledPin = PA15;
int visit_count = 0;

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 104 of 202

void info_html_generator (const char* url, const char* query, httppage_request_t* http_request);
void file_not_found_generator (const char* url, const char* query, httppage_request_t* http_request);

const char hello_html[] = "<html><body> <h1>Hello World!</h1> </body></html>";

HTTPPage pages[] =
{
 HTTPPageRedirect("/", "/hello.html"), // redirect root to hello page
 HTTPPage("/hello.html", HTTP_MIME_TEXT_HTML, hello_html),
 HTTPPage("/info.html" , HTTP_MIME_TEXT_HTML, info_html_generator),
 HTTPPage("/404.html" , HTTP_MIME_TEXT_HTML, file_not_found_generator),
};

uint8_t pagecount = sizeof(pages)/sizeof(HTTPPage);

// Declare HTTPServer with max number of pages
AdafruitHTTPServer httpserver(pagecount);

/**/
/*!
 * @brief Example of generating dynamic HTML content on demand
 *
 * Link is separated to url and query
 *
 * @param url url of this page
 * @param query query string after '?' e.g "var=value"
 *
 * @param http_request This request's information
*/
/**/
void info_html_generator (const char* url, const char* query, httppage_request_t* http_request)
{
 (void) url;
 (void) query;
 (void) http_request;

 httpserver.print("Bootloader : ");
 httpserver.print(Feather.bootloaderVersion());
 httpserver.print("
");

 httpserver.print("WICED SDK : ");
 httpserver.print(Feather.sdkVersion());
 httpserver.print("
");

 httpserver.print("FeatherLib : ");
 httpserver.print(Feather.firmwareVersion());
 httpserver.print("
");

 httpserver.print("Arduino API : ");
 httpserver.print(Feather.arduinoVersion());
 httpserver.print("
");
 httpserver.print("
");

 visit_count++;
 httpserver.print("visit count : ");
 httpserver.print(visit_count);
}

/**/
/*!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 105 of 202

/*!
 * @brief HTTP 404 generator. The HTTP Server will automatically redirect
 * to "/404.html" when it can't find the requested url in the
 * list of registered pages
 *
 * The url and query string are already separated when this function
 * is called.
 *
 * @param url url of this page
 * @param query query string after '?' e.g "var=value"
 * @param http_request Details about this HTTP request
*/
/**/
void file_not_found_generator (const char* url, const char* query, httppage_request_t* http_request)
{
 (void) url;
 (void) query;
 (void) http_request;

 httpserver.print("<html><body>");
 httpserver.print("<h1>Error 404 File Not Found!</h1>");
 httpserver.print("
");

 httpserver.print("Available pages are:");
 httpserver.print("
");

 httpserver.print("");
 for(int i=0; i<pagecount; i++)
 {
 httpserver.print("");
 httpserver.print(pages[i].url);
 httpserver.print("");
 }
 httpserver.print("");

 httpserver.print("</body></html>");
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial to connect. Needed for native USB port only.
 while (!Serial) delay(1);

 Serial.println("Simple HTTP Server Example\r\n");

 // Print all software versions
 Feather.printVersions();

 // Try to connect to an AP
 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 106 of 202

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the HTTP client to auto print error codes and halt on errors
 httpserver.err_actions(true, true);

 // Configure HTTP Server Pages
 Serial.println("Adding Pages to HTTP Server");
 httpserver.addPages(pages, pagecount);

 Serial.print("Starting HTTP Server ... ");
 httpserver.begin(PORT, MAX_CLIENTS);
 Serial.println(" running");
}

/**/
/*!
 @brief The loop function runs over and over again
*/
/**/
void loop()
{
 togglePin(ledPin);
 delay(1000);
}

/**/
/*!
 @brief Connect to the defined access point (AP)
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

/**/
/*!
 @brief TCP/HTTP disconnect callback
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("---------------------");

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 107 of 202

 Serial.println("DISCONNECTED CALLBACK");
 Serial.println("---------------------");
 Serial.println();

 httpserver.stop();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 108 of 202

AdafruitMQTT
The Adafruit WICED Feather API includes an internal MQTT client that allows you perform basic MQTT operations
directly with any MQTT broker.

AdafruitMQTT inherits from AdafruitTCP and also has access to all of the functions defined in the parent class.

Note: You are also free to use an external Client (https://adafru.it/lFj) based MQTT library (for example
Adafruit_MQTT_Library (https://adafru.it/fp6)) if you prefer or need something fully under your control. AdafruitMQTT is
provided for convenience sake, and to avoid external dependencies, but isn't the only option at your disposal.

Constructors

Some MQTT brokers require a username and password to connect. If necessary, the two values should be provided in
the constructor when declaring an instance of AdafruitMQTT.

If no username and password are required, simply use the default empty constructor.

Functions

AdafruitMQTT()
AdafruitMQTT(const char* username, const char* password)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 109 of 202

https://www.arduino.cc/en/Reference/ClientConstructor
https://github.com/adafruit/Adafruit_MQTT_Library

Connection Management

AdafruitMQTT can connect to an MQTT broker using both 'open' (unencrypted) or 'secure' (TLS/SSL encrypted)
connections.

bool connected(void)

Indicates if we are currently connected to the MQTT broker or not.

Parameters: None

Returns: 'True' (1) if we are connected to the MQTT broker, otherwise 'false' (0).

bool connect (IPAddress ip, uint16_t port = 1883, bool cleanSession = true, uint16_t

bool connected (void);

bool connect (IPAddress ip,
 uint16_t port = 1883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
bool connect (const char* host,
 uint16_t port = 1883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);

bool connectSSL (IPAddress ip,
 uint16_t port = 8883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
bool connectSSL (const char* host,
 uint16_t port = 8883,
 bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);

bool disconnect (void);

bool publish (UTF8String topic,
 UTF8String message,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 bool retained = false);

bool subscribe (const char* topicFilter,
 uint8_t qos,
 messageHandler mh);

bool unsubscribe(const char* topicFilter);

void will (const char* topic,
 UTF8String message,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 uint8_t retained = 0);

void clientID (const char* client)

void setDisconnectCallback (void (*fp) (void))

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 110 of 202

bool connect (IPAddress ip, uint16_t port = 1883, bool cleanSession = true, uint16_t
keepalive_sec = MQTT_KEEPALIVE_DEFAULT);

Establishes an open connection with the specified MQTT broker.

Parameters:

ip: The IP address for the MQTT broker
port: The port to use (default = 1883)
cleanSession: Indicates whether the client and broker should remember 'state' across restarts and
reconnects (based on the 'Client ID' value set in the constructor):

If set to false (0) both the client and server will maintain state across restarts of the client, the server and the
connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if the client, server or connection
are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts of the client, the server or the
connection. This means:

Message delivery to the specified QOS cannot be maintained if the client, server or connection are
restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between messages being sent or received.
Setting a value here ensures that at least one message is sent between the client and the broker within every
'keep alive' period. If no data was sent within 'keepalive_sec' seconds, the Client will send a simple ping to the
broker to keep the connection alive. Setting this value to '0' disables the keep alive feature. The default value is
60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connect (const char* host, uint16_t port = 1883, bool cleanSession = true, uint16_t
keepalive_sec = MQTT_KEEPALIVE_DEFAULT);

Establishes an open connection with the specified MQTT broker.

Parameters:

host: The domain name for the MQTT broker
port: The port to use (default = 1883)
cleanSession: Indicates whether the client and broker should remember 'state' across restarts and reconnects
(based on the 'Client ID' value set in the constructor):

If set to false (0) both the client and server will maintain state across restarts of the client, the server and the
connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if the client, server or connection
are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts of the client, the server or the
connection. This means:

Message delivery to the specified QOS cannot be maintained if the client, server or connection are
restarted

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 111 of 202

The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between messages being sent or received.
Setting a value here ensures that at least one message is sent between the client and the broker within every
'keep alive' period. If no data was sent within 'keepalive_sec' seconds, the Client will send a simple ping to the
broker to keep the connection alive. Setting this value to '0' disables the keep alive feature. The default value is
60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connectSSL (IPAddress ip, uint16_t port = 8883, bool cleanSession = true, uint16_t
keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

Establishes a secure connection with the specified MQTT broker.

Parameters:

ip: The IP address of the MQTT broker
port: The port to use (default = 8883)
cleanSession: Indicates whether the client and broker should remember 'state' across restarts and reconnects
(based on the 'Client ID' value set in the constructor):

If set to false (0) both the client and server will maintain state across restarts of the client, the server and the
connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if the client, server or connection
are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts of the client, the server or the
connection. This means:

Message delivery to the specified QOS cannot be maintained if the client, server or connection are
restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between messages being sent or received.
Setting a value here ensures that at least one message is sent between the client and the broker within every
'keep alive' period. If no data was sent within 'keepalive_sec' seconds, the Client will send a simple ping to the
broker to keep the connection alive. Setting this value to '0' disables the keep alive feature. The default value is
60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connectSSL (const char* host, uint16_t port = 8883, bool cleanSession = true, uint16_t
keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

Establishes a secure connection with the specified MQTT broker.

Parameters:

host: The domain name of the MQTT broker
port: The port to use (default = 8883)
cleanSession: Indicates whether the client and broker should remember 'state' across restarts and reconnects
(based on the 'Client ID' value set in the constructor):

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 112 of 202

If set to false (0) both the client and server will maintain state across restarts of the client, the server and the
connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if the client, server or connection
are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts of the client, the server or the
connection. This means:

Message delivery to the specified QOS cannot be maintained if the client, server or connection are
restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between messages being sent or received.
Setting a value here ensures that at least one message is sent between the client and the broker within every
'keep alive' period. If no data was sent within 'keepalive_sec' seconds, the Client will send a simple ping to the
broker to keep the connection alive. Setting this value to '0' disables the keep alive feature. The default value is
60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool disconnect (void)

Disconnects from the remote MQTT broker.

Parameters: None

Returns: 'True' (1) if the disconnect was successful, otherwise 'false' (0) if an error occured (check .errno, .errstr, etc.).

Messaging

The following functions allow you to publish, subscribe and unsubscribe to MQTT topics:

bool publish (UTF8String topic, UTF8String message, uint8_t qos =
MQTT_QOS_AT_MOST_ONCE, bool retained = false);

Published the supplied 'message' to the specified 'topic'.

Parameters:

topic: The topic where the data should be published (ex: "adafruit/data" or "home/rooms/bedroom/temp").
 UTF8String is used to make it easier to work with UTF8 data.
message: The string of data to write to the specified 'topic'. UTF8String is used to make it easier to work with
UTF8 data.
qos: The quality of service level (see the MQTT spec for details). Default = 'At Most Once', meaning the message
tries to send once but isn't persisted if the send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

retained: Whether or not the published message should be 'retained' by the MQTT broker. Sending a message
with the retained bool set to 'false' (0) will clear any previously retained message from the broker. The default
value is false.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 113 of 202

Returns: 'True' (1) if the publish was successful, otherwise 'false' (0) if an error occured (check .errno, .errstr, etc.).

bool subscribe (const char* topicFilter, uint8_t qos, messageHandler mh);

Subscribes to a specific topic, using a callback mechanism to alert you when new data is available on the specific
topicFilter.

Parameters:

topicFilter: The topic name or topic 'filter' to subscribe to. This can be either a single topic
("home/kitchen/fridge/temp") or make use of a standard MQTT wildcard like "home/+", which will subscribe to
changes to any topic above the 'home/' level.
qos: A subscribing client can set the maximum quality of service a broker uses to send messages that match the
client subscriptions. The QoS of a message forwarded to a subscriber thus might be different to the QoS given to
the message by the original publisher. The lower of the two values is used to forward a message. The value
of qos can be one of:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

mh: The MQTT subscribe callback function that will handle callback events (see Subscribe Callback
Handler below for details).

Returns: 'True' (1) if the subscribe was successful, otherwise 'false' (0) if an error occured (check .errno, .errstr, etc.).

Subscribe Callback Handler(s)

When you subscribe to a specific topic or topic filter, you also need to pass in a callback function that will be used to
handle any subscribe matches or events.

MQTT subscribe callback functions must have the following format:

You can subscribe to up to EIGHT (8) topics with the internal MQTT client.

The same callback handler can be used for multiple subscriptions, or you can use individual callbacks for
each subscribe. The choice will depend on your specific project.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 114 of 202

Callback Handler Parameters

topic: The topic that caused the subscribe callback to fire (UTF8-encoded)
message: The UTF8 encoded message associated with topic_data

bool unsubscribe(const char* topicFilter);

Unsubscribes from a specific topic or topic filter.

Parameters: The topic or topic filter to unsubscribe from

Returns: 'True' (1) is the unsubscribe was successful, otherwise 'false' (0).

Last Will

MQTT has a concept called a 'Last Will' message. The optional 'Last Will' message can be set using a user-define topic,

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.print("[Subscribed] ");
 Serial.print(topic);
 Serial.print(" : ") ;
 Serial.println(message);

 // Echo back
 Serial.print("Echo back to " TOPIC_ECHO " ... ");
 mqtt.publish(TOPIC_ECHO, message); // Will halt if an error occurs
 Serial.println("OK");

 // Unsubscribe from SUBSCRIBED_TOPIC2 if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing from " TOPIC_SUBSCRIBE " ... ");
 mqtt.unsubscribe(TOPIC_SUBSCRIBE); // Will halt if fails
 Serial.println("OK");
 }
}

Note the use of UTF8String for 'topic' and 'message' since the strings that are returned are UTF8 encoded
and NOT NULL terminated, so we need to use this helper to convert them to something we can safely print.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 115 of 202

and this message will be sent if the server/broker is unable to contact the client for a specific amount of time.

This functionality isn't a mandatory part of MQTT, but can be used to detect when nodes are online and offline. When
you connect, you can for example set a string like "Online" to a specific topic, and then set a last will message of
"Offline" to that same topic. If the node goes offline (battery failure, disconnect, etc.), the broker will use the last will to
set the topic to "Offline" once the server/client timeout occurs.

void will (const char* topic, UTF8String message, uint8_t qos =
MQTT_QOS_AT_MOST_ONCE, uint8_t retained = 0);

Sets the last will message.

Parameters:

topic: The topic where the data should be published (ex: "adafruit/data" or "home/rooms/bedroom/temp").
message: The string of data to write to the specified 'topic' (UTF8String is used to make it easier to work with
UTF8 data).
qos: The quality of service level (see the MQTT spec for details). Default = 'At Most Once', meaning the message
tries to send once but isn't persisted if the send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

retained: Whether or not the published message should be 'retained' by the MQTT broker. Sending a message
with the retained bool set to 'false' (0) will clear any previously retained message from the broker. The default
value is false.

Returns: 'True' (1) is the last will message was successfully set, otherwise 'false' (0).

Client ID

The client identifier (Client ID) is an string that identifies each MQTT client connecting to an MQTT broker.

This value should be unique on the broker since the broker uses it for identifying the client and the client's current
'state' of the client (subscriptions, QoS, etc.).

By default, a random 10-23 character string will be generated for the unique Client ID that gets passed to the broker
during the connection process. If you wish to maintain a consistent client ID across connections, however, you can
override the random client ID by using the .clientID function below:

void clientID(const char* client)

Sets a manual Client ID, overriding the default random value.

Parameters:

client: A null-terminated string representing the client ID to pass to the MQTT broker.

Returns: Nothing

Be sure to set the last will BEFORE calling the .connect function since the last will is set during the connect
phase!

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 116 of 202

Disconnect Callback

An optional disconnect callback is available in AdafruitMQTT. This callback handler will fire when you are
disconnected from the remote MQTT broker.

To use the callback, add the following function to your sketch (the function name and the contents of the function can
change depending on your project requirements):

Then pass this function name into the .setDisconnectCallback function BEFORE calling .connect or .connectSSL:

AdafruitMQTT Example

The following example illustrates how to subscribe to topics, set the last will message, publish, and implement one or
more subscribe callback handlers:

void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-----------------------------");
 Serial.println("DISCONNECTED FROM MQTT BROKER");
 Serial.println("-----------------------------");
 Serial.println();
}

// Set the disconnect callback handler
mqtt.setDisconnectCallback(disconnect_callback);

This example uses the freely accessible test MQTT broker at test.mosquitto.org. This server is publicly
accessible, so be careful what data you push to it since anyone can see the publications!

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include "certificate_mosquitto.h"

/* This sketch demonstrates subscribe/unsubscribe activity with
 * callbacks.
 *
 * It will connect to a public MQTT server (with/without TLS)
 * and subscribe to TOPIC_SUBSCRIBE (defined below).

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 117 of 202

 * and subscribe to TOPIC_SUBSCRIBE (defined below).
 *
 * - When a message is received, it will echo back to TOPIC_ECHO
 * - If the received message is "stop", we will
 * unsubscribe from TOPIC_SUBSCRIBE and you won't be able to
 * echo content back to the broker any longer.
 *
 * Note: TOPIC_SUBSCRIBE and TOPIC_ECHO must not be the same topic!
 * Ex. They must not be "adafruit/+" and "adafruit/echo", since this will
 * cause an infinite loop (received -> echo -> received ->)
 *
 * For details on the MQTT broker server see http://test.mosquitto.org/
 * - Port 1883 : MQTT, unencrypted
 * - Port 8883 : MQTT, encrypted (TLS)
 *
 * Note: may You need an MQTT desktop client such as the lightweight
 * Java client included in this repo: org.eclipse.paho.mqtt.utility-1.0.0.jar
 *
 * For information on configuring your system to work with MQTT see:
 * - https://learn.adafruit.com/desktop-mqtt-client-for-adafruit-io/installing-software
 *
 * To run this demo
 * 1. Change the WLAN_SSID/WLAN_PASS to match your access point
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change TOPIC*, WILL*, enable CLIENTID if needed
 * 4. Compile and run
 * 5. Use an MQTT desktop client to connect to the same MQTT broker and
 * publish to any topic beginning with "adafruit/feather/" (depending
 * on TOPIC_SUBSCRIBE). To be able to recieve the echo message, please
 * also subcribe to "adafruit/feather_echo" (TOPIC_ECHO).
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define USE_TLS 0

#define BROKER_HOST "test.mosquitto.org"
#define BROKER_PORT (USE_TLS ? 8883 : 1883)

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

#define TOPIC_SUBSCRIBE "adafruit/feather/+"
#define TOPIC_ECHO "adafruit/feather_echo"

#define WILL_TOPIC "adafruit/feather"
#define WILL_MESSAGE "Goodbye!!"

AdafruitMQTT mqtt;

/**/
/*!
 @brief Disconnect handler for MQTT broker connection
*/
/**/
void disconnect_callback(void)
{
 Serial.println();
 Serial.println("-----------------------------");

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 118 of 202

 Serial.println("DISCONNECTED FROM MQTT BROKER");
 Serial.println("-----------------------------");
 Serial.println();
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("MQTT Subscribe Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 mqtt.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 mqtt.clientID(CLIENTID);
 #endif

 // Last will must be set before connecting since it is part of the connection data
 mqtt.will(WILL_TOPIC, WILL_MESSAGE, MQTT_QOS_AT_LEAST_ONCE);

 // Set the disconnect callback handler
 mqtt.setDisconnectCallback(disconnect_callback);

 Serial.printf("Connecting to " BROKER_HOST " port %d ... ", BROKER_PORT);
 if (USE_TLS)
 {
 // Disable default RootCA to save SRAM since we don't need to
 // access any other site except test.mosquitto.org
 Feather.useDefaultRootCA(false);

 // mosquitto CA is pre-generated using pycert.py
 Feather.addRootCA(rootca_certs, ROOTCA_CERTS_LEN);

 // Connect with SSL/TLS
 mqtt.connectSSL(BROKER_HOST, BROKER_PORT);
 }else
 {
 mqtt.connect(BROKER_HOST, BROKER_PORT);
 }

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 119 of 202

 }
 Serial.println("OK");

 Serial.print("Subscribing to " TOPIC_SUBSCRIBE " ... ");
 mqtt.subscribe(TOPIC_SUBSCRIBE, MQTT_QOS_AT_MOST_ONCE, subscribed_callback); // Will halted if an error occurs
 Serial.println("OK");
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{

}

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.print("[Subscribed] ");
 Serial.print(topic);
 Serial.print(" : ") ;
 Serial.println(message);

 // Echo back
 Serial.print("Echo back to " TOPIC_ECHO " ... ");
 mqtt.publish(TOPIC_ECHO, message); // Will halt if an error occurs
 Serial.println("OK");

 // Unsubscribe from SUBSCRIBED_TOPIC2 if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing from " TOPIC_SUBSCRIBE " ... ");
 mqtt.unsubscribe(TOPIC_SUBSCRIBE); // Will halt if fails
 Serial.println("OK");
 }
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 120 of 202

{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 121 of 202

AdafruitMQTTTopic
AdafruitMQTT includes an OPTIONAL helper class called AdafruitMQTTTopic that can be used to publish data to a
single topic on an MQTT broker.

This helper class inherits from Print (https://adafru.it/lFk), which allows you to write data to MQTT topics similarly to how
you would write data to the 'Serial Monitor', using .print statements.

Constructor

Parameters:

mqtt: A reference to the AdafruitMQTT instance associated with this helper (since the connection to the MQTT
broker is defined and managed there).
topic: A null-terminated string containing the topic to publish to
qos: An optional quality of server (QoS) level to use when publishing. If left empty, this argument will default to
'At Most Once', meaning it will try to publish the data but if the operation fails it won't persist the attempt and retry
again later.
retain: Sets the 'retain' bit to indicate if any messages published to the MQTT broker should be retained on the
broker for the next client(s) that access that topic.

The following example shows how to properly declare an instance of the AdafruitMQTTTopic class (note that the
default QoS and retain values are used):

Functions

In addition to the functions defined in the Print base class (https://adafru.it/lFk) (see the Print.h
source (https://adafru.it/lFl) as well), the following functions are defined as part of AdafruitMQTTTopic:

void retain (bool on)

Enables or disabled the 'retain' feature when publishing messages. This indicates whether the published message
should be maintained on the broker when a message is written to the topic.

See 'MQTT/MqttTopicClass' in the examples folder for an example of how to use AdafruitMQTTTopic.

AdafruitMQTTTopic(AdafruitMQTT& mqtt,
 const char* topic,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 bool retain = false)

#define CLIENTID "Adafruit Feather"
#define TOPIC "adafruit/feather"

AdafruitMQTT mqtt (CLIENTID);
AdafruitMQTTTopic publisher (mqtt, TOPIC);

void retain(bool on)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 122 of 202

http://playground.arduino.cc/Code/Printclass
http://playground.arduino.cc/Code/Printclass
https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/Print.h

Parameters:

on: Whether or not the published message should be 'retained' by the MQTT broker. Sending a message with
the this set to 'false' (0) will clear any previously retained message from the broker.

Returns: Nothing

Subscribe Callbacks

You can also subscribe or unsubcribe to publications on the topic using the following functions:

bool subscribe (messageHandler_t mh)

This function will subscribe to the topic and any changes will be sent to the specified callback handler.

Parameters:

mh: The callback handler where the subscription event should be redirected to.

Returns: 'True' (1) is the subscribe was successful, otherwise 'false' (0).

Subscription callback handlers have the following format:

The default value for 'retain' is false, unless it is modified using this function.

bool subscribe (messageHandler_t mh);
bool unsubscribe (void);
bool subscribed (void);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 123 of 202

bool unsubscribe (void)

Unsubscribes to the topic if you previously called .subscribe.

Parameters: None

Returns: 'True' (1) if the operation succeeded, otherwise 'false' (0).

bool subscribed (void)

Indicates whether you are currently susbcripted to this topic or not.

Parameters: None

Returns: 'True' (1) if you are subscribed, otherwise 'false' (0).

Publishing Data via 'Print'

One important thing to keep in mind with AdafruitMQTTTopic is that every .print* function corresponds to an MQTT
publication request.

The following code will result in three different MQTT publications:

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.printf("["); Serial.print(topic); Serial.printf("]");
 Serial.print(" : message = ") ;
 Serial.println(message);

 // Unsubscribe if message = "stop"
 if (message == "stop")
 {
 Serial.print("Unsubscribing ... ");
 mqttTopic.unsubscribe(); // Will halt if fails
 Serial.println("OK");
 }
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 124 of 202

You can work around this '1 print = 1 publication' restriction by using the printf function, as shown in the example below:

For a full list of printf modifiers (the special '%' character sequences that get replaced with variables after the main
string) see printf here (https://adafru.it/lFm).

The most common modifiers are described below though (all preceded by '%' so '%d' for a signed decimal value, etc.) :

d or i: Signed decimal value ('int', 'int16_t', etc.)
u: unsigned decimal value ('uint32_t', etc.)
x: lower-case hexadecimal integer (ex. 'a12b' for 0xA12B)
X: upper-case hexadecimal integer (ex. 'A12B' for 0xA12B)
f: floating point value ('float', etc.)
s: null-terminated string of characters (ex. "sample")
c: A single characters (ex. 'a')

Example

The following sketch shows how you might use AdafruitMQTTTopic in the real world. The latest source can be found
in the MQTT/MqttTopicClass folder in 'examples'.

int number_of_days = 7;
char* place = "somewhere";

pub.print(number_of_days);
pub.print(" days since something happened ");
pub.print(place);

int number_of_days = 7;
char* place = "somewhere";

pub.printf("%d days since something happened %s", number_of_days, place);

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include "certificate_mosquitto.h"

/* This sketch connects to a public MQTT server (with/without TLS)
 * and publishes a message to a topic every 5 seconds.
 *
 * For server details see http://test.mosquitto.org/
 * - Port 1883 : MQTT, unencrypted

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 125 of 202

http://www.cplusplus.com/reference/cstdio/printf/

 * - Port 1883 : MQTT, unencrypted
 * - Port 8883 : MQTT, encrypted (TLS)
 *
 * Note: may You need an MQTT desktop client such as
 * - The lightweight Java client included in this repo: org.eclipse.paho.mqtt.utility-1.0.0.jar or
 * - A full desktop client like MQTT.fx https://learn.adafruit.com/desktop-mqtt-client-for-adafruit-io/installing-software
 *
 * To run this demo
 * 1. Change WLAN_SSID/WLAN_PASS
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change CLIENTID, TOPIC, PUBLISH_MESSAGE, WILL_MESSAGE if you want
 * 4. Compile and run
 * 5. Use your MQTT desktop client to connect to the same sever and subscribe
 * to the defined topic to monitor the published message(s).
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define USE_TLS 0

#define BROKER_HOST "test.mosquitto.org"
#define BROKER_PORT (USE_TLS ? 8883 : 1883)

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

#define TOPIC "adafruit/feather"
#define WILL_MESSAGE "Goodbye!!"

AdafruitMQTT mqtt;
AdafruitMQTTTopic mqttTopic(&mqtt, TOPIC, MQTT_QOS_EXACTLY_ONCE);

char old_value = '0';
char value = '0';

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("MQTT Publish using Publisher Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 126 of 202

 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 mqtt.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 mqtt.clientID(CLIENTID);
 #endif

 // Last will must be set before connecting since it is part of the connection data
 mqtt.will(TOPIC, WILL_MESSAGE, MQTT_QOS_AT_LEAST_ONCE);

 // Connect to broker
 Serial.printf("Connecting to " BROKER_HOST " port %d ... ", BROKER_PORT);
 if (USE_TLS)
 {
 // Disable default RootCA to save SRAM since we don't need to
 // access any other site except test.mosquitto.org
 Feather.useDefaultRootCA(false);

 // mosquitto CA is pre-generated using pycert.py
 Feather.addRootCA(rootca_certs, ROOTCA_CERTS_LEN);

 // Connect with SSL/TLS
 mqtt.connectSSL(BROKER_HOST, BROKER_PORT);
 }else
 {
 mqtt.connect(BROKER_HOST, BROKER_PORT);
 }
 Serial.println("OK");

 // Subscribe with callback
 mqttTopic.subscribe(subscribed_callback);

 Serial.println("Please use desktop client to subcribe to \'" TOPIC "\' to monitor");

 // Inital publish
 Serial.printf("Publishing \'%d\' ... ", value);
 mqttTopic.print(value); // use .write to send in binary format
 Serial.println("OK");
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{
 // value changed due to subscribed callback
 if (old_value != value)
 {
 // check if still subscribed
 if (mqttTopic.subscribed())
 {
 old_value = value;
 Serial.println();
 Serial.printf("Publishing \'%c\' ... \r\n", value);
 mqttTopic.print(value); // use .write to send in binary format
 }

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 127 of 202

 }
 }
}

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Copy received data to 'value'
 memcpy(&value, message.data, 1);

 // Print out topic name and message
 Serial.printf("["); Serial.print(topic); Serial.printf("]");
 Serial.print(" : value = ") ;
 Serial.println(value);

 // Increase value by 1
 value++;

 // wrap around
 if (value > '9') value = '0';

 // Unsubscribe if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing ... ");
 mqttTopic.unsubscribe(); // Will halt if fails
 Serial.println("OK");
 }
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 128 of 202

 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 129 of 202

AdafruitAIO
AdafruitAIO is a special class the inherits from AdafruitMQTT (described earlier in this learning guide). It takes the
core features from AdafruitMQTT and adds some helper functions that make working with Adafruit
IO (https://adafru.it/fsU) easier.

Constructor

Parameters:

username: The username associated with your Adafruit IO account (normally visible here (https://adafru.it/dyy)).
password: The Adafruit IO key associated with your account. This is available by logging into Adafruit IO and
clicking the yellow 'key' icon labelled 'Your secret AIO key'.

Functions

In addition to the functions defined in the AdafruitMQTT base class, The following functions are included as part of
AdafruitAIO:

Connecting

The following functions are available to connect to the Adafruit IO server:

bool connect (bool cleanSession = true, uint16_t keepalive_sec =

If you're unfamiliar with Adafruit IO have a look at our introductory learning guide here:
https://learn.adafruit.com/adafruit-io

AdafruitAIO(const char* username, const char* password)

By default AdafruitAIO will generate a random 10..23 character string for the ClientID. If required you can
override the default value via the .clientID function if it is called BEFORE the .connect or .connectSSL
functions.

bool connect (bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

bool connectSSL (bool cleanSession = true,
 uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

bool updateFeed (const char* feed,
 UTF8String message,
 uint8_t qos=MQTT_QOS_AT_MOST_ONCE,
 bool retain=true)

bool followFeed (const char* feed,
 uint8_t qos,
 messageHandler_t mh)

bool unfollowFeed (const char* feed)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 130 of 202

https://io.adafruit.com/
https://learn.adafruit.com/adafruit-io
https://accounts.adafruit.com/

MQTT_KEEPALIVE_DEFAULT)

This function will attempt to connect to the Adafruit IO servers using a standard (unencrypted) connection.

Parameters:

cleanSession: Indicates whether the client and broker should remember 'state' across restarts and reconnects.
'State' maintenance is based on the Client ID so be sure to set a reusable value via .clientID if you set
cleanSession to false!:

If set to false (0) both the client and server will maintain state across restarts of the client, the server and the
connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if the client, server or connection
are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts of the client, the server or the
connection. This means:

Message delivery to the specified QOS cannot be maintained if the client, server or connection are
restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between messages being sent or received.
Setting a value here ensures that at least one message is sent between the client and the broker within every
'keep alive' period. If no data was sent within 'keepalive_sec' seconds, the Client will send a simple ping to the
broker to keep the connection alive. Setting this value to '0' disables the keep alive feature. The default value is
60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

bool connectSSL (bool cleanSession = true, uint16_t keepalive_sec =
MQTT_KEEPALIVE_DEFAULT)

This function will attempt to connect to the Adafruit IO servers using a secure (TLS/SSL) connection.

Parameters:

cleanSession: Indicates whether the client and broker should remember 'state' across restarts and reconnects.
'State' maintenance is based on the Client ID so be sure to set a reusable value via .clientID if you set
cleanSession to false!:

If set to false (0) both the client and server will maintain state across restarts of the client, the server and the
connection. As state is maintained:

Message delivery will be reliable meeting the specified QOS even if the client, server or connection
are restarted.
The server will treat a subscription as durable.

If set to true (1) the client and server will not maintain state across restarts of the client, the server or the
connection. This means:

Message delivery to the specified QOS cannot be maintained if the client, server or connection are
restarted
The server will treat a subscription as non-durable

keepalive_sec: This value defines the maximum interval (in seconds) between messages being sent or received.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 131 of 202

Setting a value here ensures that at least one message is sent between the client and the broker within every
'keep alive' period. If no data was sent within 'keepalive_sec' seconds, the Client will send a simple ping to the
broker to keep the connection alive. Setting this value to '0' disables the keep alive feature. The default value is
60 seconds.

Returns: 'True' (1) if the connection was successful, otherwise 'false' (0).

Feed Management

The following functions are available to work with AIO feeds:

bool updateFeed (const char* feed, UTF8String message, uint8_t
qos=MQTT_QOS_AT_MOST_ONCE, bool retain=true)

Updates the value associated with the specified 'feed' ('topic' in MQTT terminology).

Parameters:

feed: The feed to update, not including the 'username/feeds/' prefix. So to work with 'username/feeds/onoff' you
should simply supply 'onoff' as the feedname.
qos: The quality of service level (see the MQTT spec for details). Default = 'At Most Once', meaning the message
tries to send once but isn't persisted if the send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

retained: Whether or not the published message should be 'retained' by the MQTT broker. Sending a message
with the retained bool set to 'false' (0) will clear any previously retained message from the broker. The default
value is false.

Returns: 'True' (1) if the feed was succesfully updated, otherwise 'false' (0).

bool followFeed (const char* feed, uint8_t qos, messageHandler_t mh)

Follows (or 'subscribes' in MQTT terminology) to the specified AIO feed, which will cause the specific callback handler
function to fire every time the feed is changed on the AIO server.

Parameters:

feed: The feed to follow, not including the 'username/feeds/' prefix. So to work with 'username/feeds/onoff' you
should simply supply 'onoff' as the feedname.
qos: The quality of service level (see the MQTT spec for details). Default = 'At Most Once', meaning the message
tries to send once but isn't persisted if the send fails. Possible values are:

MQTT_QOS_AT_MOST_ONCE
MQTT_QOS_AT_LEAST_ONCE
MQTT_QOS_EXACTLY_ONCE

mh: The callback handler function to fire whenever the feed is changed. The callback handler should have the
following signature:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 132 of 202

Returns: 'True' (1) if the follow operation was successful, otherwise 'false' (0).

bool unfollowFeed (const char* feed)

Unfollows (or 'unsubscribes' in MQTT terminology) to the specified feed.

Parameters:

feed: The feed to update, not including the 'username/feeds/' prefix. So to work with 'username/feeds/onoff' you
should simply supply 'onoff' as the feedname.

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

Example

The following example show how you can use the AdafruitAIO class to communicate with the Adafruit IO servers:

/**/
/*!
 @brief 'follow' event callback handler

 @param message The new value associated with this feed

 @note 'message' is a UTF8String (byte array), which means
 it is not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void feed_callback(UTF8String message)
{
 // Print message
 Serial.println(message);
}

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include "certificate_mosquitto.h"

/* This sketch demonstrates subscribe/unsubscribe activity with
 * callbacks.
 *

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 133 of 202

 * It will connect to a public MQTT server (with/without TLS)
 * and subscribe to TOPIC_SUBSCRIBE (defined below).
 *
 * - When a message is received, it will echo back to TOPIC_ECHO
 * - If the received message is "stop", we will
 * unsubscribe from TOPIC_SUBSCRIBE and you won't be able to
 * echo content back to the broker any longer.
 *
 * Note: TOPIC_SUBSCRIBE and TOPIC_ECHO must not be the same topic!
 * Ex. They must not be "adafruit/+" and "adafruit/echo", since this will
 * cause an infinite loop (received -> echo -> received ->)
 *
 * For details on the MQTT broker server see http://test.mosquitto.org/
 * - Port 1883 : MQTT, unencrypted
 * - Port 8883 : MQTT, encrypted (TLS)
 *
 * Note: may You need an MQTT desktop client such as the lightweight
 * Java client included in this repo: org.eclipse.paho.mqtt.utility-1.0.0.jar
 *
 * For information on configuring your system to work with MQTT see:
 * - https://learn.adafruit.com/desktop-mqtt-client-for-adafruit-io/installing-software
 *
 * To run this demo
 * 1. Change the WLAN_SSID/WLAN_PASS to match your access point
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change TOPIC*, WILL*, enable CLIENTID if needed
 * 4. Compile and run
 * 5. Use an MQTT desktop client to connect to the same MQTT broker and
 * publish to any topic beginning with "adafruit/feather/" (depending
 * on TOPIC_SUBSCRIBE). To be able to recieve the echo message, please
 * also subcribe to "adafruit/feather_echo" (TOPIC_ECHO).
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define USE_TLS 0

#define BROKER_HOST "test.mosquitto.org"
#define BROKER_PORT (USE_TLS ? 8883 : 1883)

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

#define TOPIC_SUBSCRIBE "adafruit/feather/+"
#define TOPIC_ECHO "adafruit/feather_echo"

#define WILL_TOPIC "adafruit/feather"
#define WILL_MESSAGE "Goodbye!!"

AdafruitMQTT mqtt;

/**/
/*!
 @brief Disconnect handler for MQTT broker connection
*/
/**/
void disconnect_callback(void)
{
 Serial.println();

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 134 of 202

 Serial.println();
 Serial.println("-----------------------------");
 Serial.println("DISCONNECTED FROM MQTT BROKER");
 Serial.println("-----------------------------");
 Serial.println();
}

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("MQTT Subscribe Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 mqtt.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 mqtt.clientID(CLIENTID);
 #endif

 // Last will must be set before connecting since it is part of the connection data
 mqtt.will(WILL_TOPIC, WILL_MESSAGE, MQTT_QOS_AT_LEAST_ONCE);

 // Set the disconnect callback handler
 mqtt.setDisconnectCallback(disconnect_callback);

 Serial.printf("Connecting to " BROKER_HOST " port %d ... ", BROKER_PORT);
 if (USE_TLS)
 {
 // Disable default RootCA to save SRAM since we don't need to
 // access any other site except test.mosquitto.org
 Feather.useDefaultRootCA(false);

 // mosquitto CA is pre-generated using pycert.py
 Feather.addRootCA(rootca_certs, ROOTCA_CERTS_LEN);

 // Connect with SSL/TLS
 mqtt.connectSSL(BROKER_HOST, BROKER_PORT);
 }else
 {
 mqtt.connect(BROKER_HOST, BROKER_PORT);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 135 of 202

 mqtt.connect(BROKER_HOST, BROKER_PORT);
 }
 Serial.println("OK");

 Serial.print("Subscribing to " TOPIC_SUBSCRIBE " ... ");
 mqtt.subscribe(TOPIC_SUBSCRIBE, MQTT_QOS_AT_MOST_ONCE, subscribed_callback); // Will halted if an error occurs
 Serial.println("OK");
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{

}

/**/
/*!
 @brief MQTT subscribe event callback handler

 @param topic The topic causing this callback to fire
 @param message The new value associated with 'topic'

 @note 'topic' and 'message' are UTF8Strings (byte array), which means
 they are not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void subscribed_callback(UTF8String topic, UTF8String message)
{
 // Print out topic name and message
 Serial.print("[Subscribed] ");
 Serial.print(topic);
 Serial.print(" : ") ;
 Serial.println(message);

 // Echo back
 Serial.print("Echo back to " TOPIC_ECHO " ... ");
 mqtt.publish(TOPIC_ECHO, message); // Will halt if an error occurs
 Serial.println("OK");

 // Unsubscribe from SUBSCRIBED_TOPIC2 if we received an "stop" message
 // Won't be able to echo anymore
 if (message == "stop")
 {
 Serial.print("Unsubscribing from " TOPIC_SUBSCRIBE " ... ");
 mqtt.unsubscribe(TOPIC_SUBSCRIBE); // Will halt if fails
 Serial.println("OK");
 }
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 136 of 202

/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Attempting to connect to: ");
 Serial.println(WLAN_SSID);

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 137 of 202

AdafruitAIOFeed
AdafruitAIOFeed is an optional helper class based on AdafruitMQTTTopic. It aims to make working with feeds in
Adafruit IO a bit easier, with the goal of implementing specialised classes that correspond to AIO feed types in the
future.

Constructor

AdafruitAIOFeed uses the following constructor:

Parameters:

aio: A reference to the AdafruitAIO class instance, which will be used when sending and receiving data to the
AIO server.
feed: A string containing the name of the AIO feed to work with, minus the 'username/feeds/' text which will be
automatically added by this class. For example, to work with 'testuser/feeds/status' you would provide 'status' to
the feed parameter.
qos: An optional quality of server (QoS) level to use when publishing. If left empty, this argument will default to
'At Most Once', meaning it will try to publish the data but if the operation fails it won't persist the attempt and retry
again later.
retain: Sets the 'retain' bit to indicate if any messages published to the MQTT broker should be retained on the
broker for the next client(s) that access that topic. By default this will be set to 'true' for AIO feeds.

Functions

The following functions are defined as part of AdafruitAIOFeed, but you also have access to the public functions that
are defined in AdafruitMQTTTopic since AdafruitAIOFeed class inherits from it.

bool follow (feedHandler_t fp)

Enables you to 'follow' this feed, meaning that you subscribe to any changes that are published to this feed on the AIO
server. To follow the feed, you simple set the callback handler, which is the function that will be called when this feed
changes in AIO.

Parameters:

Be sure to look at the documentation for AdafruitMQTTTopic as well, since this class is a specialized version
of that aimed at Adafruit IO.

AdafruitAIOFeed(AdafruitAIO* aio,
 const char* feed,
 uint8_t qos = MQTT_QOS_AT_MOST_ONCE,
 bool retain = true)

bool follow (feedHandler_t fp)
bool unfollow (void)
bool followed (void)

virtual size_t write (const uint8_t *buf, size_t len)
virtual size_t write (uint8_t ch)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 138 of 202

fp: The callback handler function that will be fired when the feed changes on the AIO server. This function
should have the following signature:

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

bool unfollow (void)

Calling this function will stop the follow callback and unsubscribe from the feed, meaning any changes will no longer
be received by this class.

Parameters: None

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

bool followed (void)

Checks whether 'follow' is currently enabled or not (indicate whether or not we are subscribed to the AIO feed).

Parameters: None

Returns: 'True' (1) if the operation was successful, otherwise 'false' (0).

Example

For more examples of working with AdafruitIO and AdafruitIOFeed see the /AIO folder in /examples in the WICED
Feather board support package.

The name of the callback handler function can be set to anything you like, although the parameters and
return type must be identical.

void feed_callback(UTF8String message)
{
 Serial.println(message);
}

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include <adafruit_feather.h>
#include <adafruit_mqtt.h>
#include <adafruit_aio.h>

/* This sketch connects to the Adafruit IO server at io.adafruit.com

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 139 of 202

/* This sketch connects to the Adafruit IO server at io.adafruit.com
 * and updates a 'PHOTOCELL_FEED' every 5 seconds.
 *
 * It also follow 'ONOFF_FEED' to receive updates from the AIO server via
 * the built-in follow/subscribe callback handler.
 *
 * To run this demo
 * 1. Change WLAN_SSID/WLAN_PASS
 * 2. Decide whether you want to use TLS/SSL or not (USE_TLS)
 * 3. Change AIO_USERNAME, AIO_KEY to match your own account details
 * 4. If you want, change PHOTOCELL_FEED and ONOFF_FEED to use different feeds
 * 5. Compile and run
 * 6. Optionally log into the AIO webserver to see any changes in data, etc.
 */

#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPass"

#define AIO_USERNAME "...your AIO username (see https://accounts.adafruit.com)..."
#define AIO_KEY "...your AIO key..."

// AdafruitAIO will auto append the "username/feeds/" prefix to your feed(s)
#define PHOTOCELL_FEED "photocell"
#define ONOFF_FEED "onoff"

// Connect using TLS/SSL or not
#define USE_TLS 0

// Uncomment to set your own ClientID, otherwise a random ClientID is used
//#define CLIENTID "Adafruit Feather"

AdafruitAIO aio(AIO_USERNAME, AIO_KEY);
AdafruitAIOFeed photocell (&aio, PHOTOCELL_FEED);
AdafruitAIOFeed onoff (&aio, ONOFF_FEED);

int value = 0;

/**/
/*!
 @brief The setup function runs once when the board comes out of reset
*/
/**/
void setup()
{
 Serial.begin(115200);

 // Wait for the USB serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("AIO Test Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 140 of 202

 Feather.printNetwork();

 // Tell the MQTT client to auto print error codes and halt on errors
 aio.err_actions(true, true);

 // Set ClientID if defined
 #ifdef CLIENTID
 aio.clientID(CLIENTID);
 #endif

 Serial.print("Connecting to io.adafruit.com ... ");
 if (USE_TLS)
 {
 aio.connectSSL(); // Will halted if an error occurs
 }else
 {
 aio.connect(); // Will halted if an error occurs
 }
 Serial.println("OK");

 // 'Follow' the onoff feed to capture any state changes
 onoff.follow(feed_callback);
}

/**/
/*!
 @brief This loop function runs over and over again
*/
/**/
void loop()
{
 value = (value+1) % 100;

 Serial.print("Updating feed " PHOTOCELL_FEED " : ");
 Serial.print(value);
 photocell.print(value);
 Serial.println(" ... OK");

 delay(5000);
}

/**/
/*!
 @brief 'follow' event callback handler

 @param message The new value associated with this feed

 @note 'message' is a UTF8String (byte array), which means
 it is not null-terminated like C-style strings. You can
 access its data and len using .data & .len, although there is
 also a Serial.print override to handle UTF8String data types.
*/
/**/
void feed_callback(UTF8String message)
{
 // Print message
 Serial.print("[ONOFF Feed] : ");
 Serial.println(message);
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 141 of 202

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 142 of 202

AdafruitTwitter

The AdafruitTwitter class makes sending tweets easy via a custom Application that you can setup using this learning
guide.

1. Creating a WICED Twitter Application

In order to enable WICED to interact with Twitter, you first need to log in to twitter's app admin console
at http://apps.twitter.com (https://adafru.it/qof) and create a new app:

Enter the Application Details

Next you need to enter your application details, based on the following data:

The AdafruitTwitter class requires WICED Feather Lib 0.5.5 or higher to run.

The NAME field must be globally unique, so you should make it something personal like adding your twitter
username.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 143 of 202

https://twitter.com/settings/account

Then accept the license terms and click the Create your Twitter application button at the bottom of the page.

This will redirect you to the main app config page, as shown below:

Set the Application Permissions

Click on the Permissions tab and set the appropriate permissions:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 144 of 202

Click the Update Settings button to save the permissions changes.

Manage the Access Keys

Go back to the Details tab and scroll down to the Application Settings section:

Click the manage keys and access tokens link.

Copy the Appropriate Key Data

Make a note of the consumer key values blurred out below since you will need them in your sketch:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 145 of 202

Create your Access Token

On the same page shown above, click the Create my access token button to give your account access to your new
application:

Make a note of the access token data shown blurred out below, which you will also need in your sketch:

2. Using the AdafruitTwitter Class

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 146 of 202

Next, open the Applications/SendTweet example for WICED or create a new sketch with the following code, updating
it with your access point details, as well as the Consumer and Access Tokens generated above:

/***
 This is an example for our Feather WIFI modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
***/

#include "adafruit_feather.h"
#include "adafruit_http.h"
#include "adafruit_twitter.h"

/* This example demonstrates how to use AdafrtuiTwitter class
 * to send out a tweet
 *
 * To run this demo:
 * 1. Goto https://apps.twitter.com/ and login
 * 2. Create an application to use with this WICED Feather
 * 3. (Optional) You could change the access level to give the applicaion
 * permission to send DM. It is advised to do so, do that you could use WICED
 * to send DM in other example
 * 4. In the app management click "manage keys and access tokens"
 * and then click "Create my access token"
 * 5. Change CONSUMER_KEY, CONSUMER_SECRET, TOKEN_ACCESS, TOKEN_SECRET accordingly
 * 6. Change your TWEET status
 * 7. Compile and run, if you run this sketch too often, Twitter server may reject
 * your connection request, just wait a few minutes and try again.
 */

// Network
#define WLAN_SSID "yourSSID"
#define WLAN_PASS "yourPassword"

// Twitter Account
#define CONSUMER_KEY "YOUR_CONSUMER_KEY"
#define CONSUMER_SECRET "YOUR_CONSUMER_SECRET"

#define TOKEN_ACCESS "YOUR_TOKEN_ACCESS"
#define TOKEN_SECRET "YOUR_TOKEN_SECRET"

#define TWEET "Hello from Adafruit WICED Feather"

AdafruitTwitter Twitter;

/**/
/*!
 @brief The setup function runs once when reset the board
*/
/**/
void setup()

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 147 of 202

void setup()
{
 Serial.begin(115200);

 // wait for serial port to connect. Needed for native USB port only
 while (!Serial) delay(1);

 Serial.println("Twitter Send Tweet Example\r\n");

 // Print all software versions
 Feather.printVersions();

 while (!connectAP())
 {
 delay(500); // delay between each attempt
 }

 // Connected: Print network info
 Feather.printNetwork();

 Twitter.begin(CONSUMER_KEY, CONSUMER_SECRET, TOKEN_ACCESS, TOKEN_SECRET);
 Twitter.err_actions(true, true);

 Serial.print("Sending tweet: " TWEET " ... ");
 Twitter.tweet(TWEET);
 Serial.println("OK");

 Twitter.stop();
}

/**/
/*!
 @brief The loop function runs over and over again forever
*/
/**/
void loop()
{
 togglePin(PA15);
 delay(1000);
}

/**/
/*!
 @brief Connect to defined Access Point
*/
/**/
bool connectAP(void)
{
 // Attempt to connect to an AP
 Serial.print("Please wait while connecting to: '" WLAN_SSID "' ... ");

 if (Feather.connect(WLAN_SSID, WLAN_PASS))
 {
 Serial.println("Connected!");
 }
 else
 {
 Serial.printf("Failed! %s (%d)", Feather.errstr(), Feather.errno());
 Serial.println();
 }

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 148 of 202

 }
 Serial.println();

 return Feather.connected();
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 149 of 202

AdafruitSDEP
All communication between the Arduino user code (your sketch) and the lower level WiFi stack from Broadcom
happens over SDEP commands.

This is similar to the way you would talk to an external I2C or SPI sensor via a set of pre-defined registers defined in the
sensor datasheet. You send specifically formatted data to known registers (or addresses), and sometimes you get data
back in a known format (depending on the command).

SDEP is the simple data exchange protocol that we use for the command and response messages between the user
code and the lower level Feather Lib that contains the WICED WiFi stack.

Normally you won't need to deal with SDEP commands yourself since these are hidden in the AdafruitFeather,
AdafruitHTTP, etc., helper classes, but a specialized helper classed name AdafruitSDEP is available to send SDEP
commands yourself and get the response data back if the need should ever arise to talk directly to the WICED stack
yourself.

AdafruitSDEP API

Constructor

AdafruitFeather inherits from AdafruitSDEP, meaning that you don't need to instantiate AdafruitSDEP directly yourself.
 Simply call the functions described below from your AdafruitFeather class instance, which is normally available as
'Feather', so 'Feather.sdep(...)', 'Feather.sdep_n(...)', 'Feather.errno()', etc.

Functions

The following functions and parameters are present in AdafruitSDEP:

sdep

This function sends an SDEP command with up to one parameter (or no parameters if NULL is provided in the
'p_param' field or 'param_len' is set to 0).

SDEP stands for 'Simple Data Exchange Protocol', an in house protocol we use in a number of our products.

// Send a simple SDEP command (1 parameter value or less)
bool sdep (uint16_t cmd_id ,
 uint16_t param_len , void const* p_param,
 uint16_t* p_result_len , void* p_result);

// Send a complex SDEP command (multiple parameter values)
bool sdep_n (uint16_t cmd_id ,
 uint8_t para_count , sdep_cmd_para_t const* para_arr,
 uint16_t* p_result_len , void* p_result);

// SDEP error handling functions
err_t errno (void);
char const* errstr (void);
char const* cmdstr (uint16_t cmd_id);
void err_actions (bool print, bool halt);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 150 of 202

Function Prototype:

Parameters:

cmd_id: The 16-bit SDEP command ID
param_len: The length of the p_param field containing the parameter data. Set this to '0' if no parameter is
provided.
p_param: A pointer to the parameter value to pass into the SDEP command handler. Set this to NULL if no
parameter is provided.
p_result_len: A pointer to the 16-bit value where the response length will be written by the SDEP command
handler
p_result: A pointer to where the response data should be written by the SDEP command handler

Return Value:

'true' if the function executed properly, otherwise 'false' if an error occured (check .errno or .errstr for details).

Examples

The simplest possible example of using this function can be seen below.

No parameter data is sent to the SDEP command, we don't check any response data (there is none from
SDEP_CMD_FACTORYRESET anyway), and we don't even check if 'sdep' returned false to indicate that there was an
error executing the command:

A more complex example of sending a simple SDEP command with this function can be seen below, where we flush
the contents of the TCP buffer.

'_tcp_handle' is an internal 32-bit value (so 4 bytes), and we pass a pointer to the value to the SDEP command handler
(notice the '&' symbol before the name saying that we should pass the address in memory for '_tcp_handle').

No response data is read back, so the last two parameters are set to NULL.

This last example checks if any TCP data is available in the buffer, and the command will set the 'result' variable to a

bool sdep(uint16_t cmd_id ,
 uint16_t param_len , void const* p_param,
 uint16_t* p_result_len , void* p_result)

void AdafruitFeather::factoryReset(void)
{
 sdep(SDEP_CMD_FACTORYRESET, 0, NULL, NULL, NULL);
}

void AdafruitTCP::flush()
{
 if (_tcp_handle == 0) return;

 // flush write
 sdep(SDEP_CMD_TCP_FLUSH, 4, &_tcp_handle, NULL, NULL);
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 151 of 202

non-zero value if any data is available.

Since we know the size of the results variable, we don't need to read back the length of the response data, and we can
insert NULL for 'p_result_len':

sdep_n

This function sends an SDEP command with an array of parameter values, using a dedicated parameter array typedef
called sdep_cmd_para_t.

Function Prototype:

Parameters:

cmd_id: The 16-bit SDEP command ID
para_count: The number of parameters in para_arr
para_arr: An array of sdep_cmd_para_t values, consisting of a 16-bit length value and a pointer to the actual
parameter data
p_results_len: A pointer to the 16-bit value where the response length will be written by the SDEP command
handler
p_result: A pointer to where the response data should be written by the SDEP command handler

Each entry in para_arr has the following structure:

Return Value:

'true' if the function executed properly, otherwise 'false' if an error occured (check .errno or .errstr for details).

Examples

The example below uses the SDEP_CMD_WIFI_PROFILE_ADD command to store the connection details to non-
volatile memory.

int AdafruitTCP::available()
{
 if (_tcp_handle == 0) return 0;

 uint32_t result = 0;
 sdep(SDEP_CMD_TCP_AVAILABLE, 4, &_tcp_handle, NULL, &result);

 return result;
}

bool sdep_n(uint16_t cmd_id ,
 uint8_t para_count , sdep_cmd_para_t const* para_arr,
 uint16_t* p_result_len , void* p_result)

typedef struct {
 uint16_t len;
 void const* p_value;
} sdep_cmd_para_t;

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 152 of 202

This is a blocking command that only returns when the procedure succeeeds or fails. As such, we will ignore any return
data from the command other than a possible SDEP error code. As such, p_results_len and p_result are both set
to NULL here:

A more complex example is shown below where we read the SDEP response, and a pointer to certain parameter
values is also used (noticed the '&' character below some parameter values). The use of pointers is necessary when
passing large or complex parameters to the SDEP command handler.

In this particular example we use SDEP_CMD_TCP_READ but we also want to read the response data.

We pass in three parameters to SDEP_CMD_TCP_READ:

The TCP handle (_tcp_handle)
The number of bytes we want to read (size16)
The timeout before returning an error (_timeout)

The command will then return the data that was read back, populating the buf and size16 fields. The 'size16' field will
contain the numbers of bytes written to 'buf' so that we can compare the numbers of bytes requested with the number
of bytes actually read out.

bool AdafruitFeather::addProfile(char* ssid)
{
 sdep_cmd_para_t para_arr[] =
 {
 { .len = strlen(ssid), .p_value = ssid },
 };
 uint8_t para_count = sizeof(para_arr)/sizeof(sdep_cmd_para_t);

 return sdep_n(SDEP_CMD_WIFI_PROFILE_ADD, para_count, para_arr,
 NULL, NULL);
}

int AdafruitTCP::read(uint8_t* buf, size_t size)
{
 if (_tcp_handle == 0) return 0;

 uint16_t size16 = (uint16_t) size;
 sdep_cmd_para_t para_arr[] =
 {
 { .len = 4, .p_value = &_tcp_handle },
 { .len = 2, .p_value = &size16 },
 { .len = 4, .p_value = &_timeout },
 };
 uint8_t para_count = sizeof(para_arr)/sizeof(sdep_cmd_para_t);

 uint16_t readlen = size16;
 VERIFY_RETURN(sdep_n(SDEP_CMD_TCP_READ, para_count, para_arr, &readlen, buf), 0);

 _bytesRead += readlen;
 return readlen;
}

The VERIFY macro in the example above is simply a helper to check the response from sdep_n, and it will

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 153 of 202

Error Handling Functions

The following functions are defined to work with any SDEP errors generated by the system:

err_t errno (void)

If sdep or sdep_n returned false as a return value, if means the SDEP command failed. To determine the error
message, you can read the results from .errno() immediately after the .sdep or .sdep_n command, which will give you a
16-bit (uint16_t) error code.

char const* errstr(void)

To provide further details on the value returned in errno you can also call .errstr() which will return a char array
containing the internam enum name for the last error code.

Unfortunately, for copyright reasons we're not able to release the Broadcom WICED WiFi stack source, but seeing the
string associated with your errno provides an excellent indicator of what went wrong executing the SDEP command.

char const* cmdstr (uint16_t cmd_id)

Returns the name of the command associated with the specified SDEP command ID.

Parameters:

cmd_id: The 16-bit SDEP command ID to lookup (based on .errno, for example)

Returns: A string representing the name of the SDEP command associated with 'cmd_id'.

void err_actions (bool print, bool halt)

This function allows you to enable various optional 'actions' that should be automatically taken when an SDEP error
occurs. By default all actions are disabled.

Parameters:

print: If set to true, any SDEP error will be displayed in the Serial Monitor via Serial.print, including both the .errstr
and .errno values. This can help keep your code clean and make it easier to switch between debug and release
mode.
halt: If set to true, the code will stop executing and wait in a 'while(1)' loop as soon as an SDEP error is
encountered.

Returns: Nothing

Error Handling Example

The following example shows an example of how you can use the .errno and .errstr functions to handle the last SDEP
error generated by the system:

return '0' if an error was encountered.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 154 of 202

// Attempt to connect to the AP
if (Feather.connect("SSID", "PASSWORD", ENC_TYPE_AUTO))
{
 int8_t rssi = Feather.RSSI();
 uint32_t ipAddress = Feather.localIP();
 // Do something now that you are connected to the AP!
}
else
{
 // Display the error message
 err_t err = Feather.errno();
 Serial.println("Connection Error:");
 switch (err)
 {
 case ERROR_WWD_ACCESS_POINT_NOT_FOUND:
 // SSID wasn't found when scanning for APs
 Serial.println("Invalid SSID");
 break;
 case ERROR_WWD_INVALID_KEY:
 // Invalid SSID passkey
 Serial.println("Invalid Password");
 break;
 default:
 // The most likely cause of errors at this point is that
 // you are just out of the device/AP operating range
 Serial.print(Feather.errno());
 Serial.print(":");
 Serial.println(Feather.errstr());
 break;
 }
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 155 of 202

Client
The WICED Feather supports the standard Arduino Client (https://adafru.it/lFj) interface that is used by many
networking boards in the Arduino ecosystem.

Adapting Client Examples

Most existing Client based examples can easily be adapted to work with the WICED Feather board family if the
following changes are made to the sketches:

1. Update Header Includes

You will need to change the default WiFi (etc.) headers to the Adafruit versions, as shown below.

Remove Existing Headers

Existing headers like 'WiFi.h', 'WiFiUDP.h', etc., should be removed from the top of your sketch.

For example ...

Add Adafruit WICED Feather Header

... should be replaced with the single 'adafruit_feather.h' header file:

2. Change 'WiFi.*' References to 'Feather.*'

References to functions like WiFi.begin(ssid, pass) or WiFi.available() should be replaced with Feather.begin(ssid,
pass) or Feather.available():

Previous Client Code

#include <WiFi.h>
#include <WiFiUdp.h>
#include <WiFiTcp.h>

#include <adafruit_feather.h>

Only one header is required with the WICED Feather board family, since the key related headers are also
referenced in that one file.

// Attempt to connect to Wifi network:
while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:
 status = WiFi.begin(ssid, pass);

 // wait 10 seconds for connection:
 delay(10000);
}

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 156 of 202

https://www.arduino.cc/en/Reference/ClientConstructor

WICED Feather Client Code

Note that at present .begin in the WICED Feather library returns a bool, not a status byte (as in the WiFi example
above), so the example has been modified slightly to detect connection status via
the .connected (https://adafru.it/lFn) function that is also part of the Client (https://adafru.it/lFj) interface.

3. Change WiFiUDP and WiFiTCP Class Types

If your example uses classes like WiFiUDP and WiFiTCP, simple replace the class names with AdafruitUDP or
AdafruitTCP.

Existing WiFiUDP Class

Updated AdafruitUDP Class

The UDP and TCP classes should generally be compatible with each other, so simply changing the class type and
using the same field name should solve 90% of your problems.

The Adafruit WICED Feather API is still a work in progress and we're trying to make the transition to the
WICED as easy as possible, but there may be some implementation differences between platforms. Hopefully
these will be addressed over time.

// Attempt to connect to Wifi network
while (!Feather.connected()) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to any network.
 // The Feather stack will try to determine the network
 // security type automatically
 bool results = Feather.begin(ssid, pass);

 // Optional: wait a bit before checking for a connection
 delay(3000);
}

// A UDP instance to let us send and receive packets over UDP
WiFiUDP Udp;

// A UDP instance to let us send and receive packets over UDP
AdafruitUDP Udp;

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 157 of 202

https://www.arduino.cc/en/Reference/ClientConnected
https://www.arduino.cc/en/Reference/ClientConstructor

Constants
The WICED Feather library uses a handful of public constants, enums, typdefs and defines. In some situations, you will
have to use these constants, enums, typedefs or defines in your own sketches, and the most common values are
documented below:

wl_enc_type_t

This typedef (which resolves to an int32_t value) is used to indicate the security encoding mechanism used by your AP
when establishing a connection. You can indicate the following values in the encoding type parameter
of Feather.connect:

ENC_TYPE_AUTO
Attempts to automatically detect the security encoding type. This is the default option if no encoding type is
specified in Feather.connect, but is also the slowest since it has to scan for all APs in range and determine the
security type if the requested AP is found.
ENC_TYPE_OPEN
Open AP (no security or password required)
ENC_TYPE_WEP
WEP security with open authentication
ENC_TYPE_WEP_SHARED
WEP security with shared authentication
ENC_TYPE_WPA_TKIP
WPA security with TKIP
ENC_TYPE_WPA_AES
WPA security with AES
ENC_TYPE_WPA_MIXED
WPA security with AES and TKIP
ENC_TYPE_WPA2_TKIP
WPA2 security with TKIP
ENC_TYPE_WPA2_AES
WPA2 security with AES
ENC_TYPE_WPA2_MIXED
WPA2 security with TKIP and AES
ENC_TYPE_WPA_TKIP_ENT
WPA enterprise security with TKIP
ENC_TYPE_WPA_AES_ENT
WPA enterprise security with AES
ENC_TYPE_WPA_MIXED_ENT
WPA enteprise security with TKIP and AES
ENC_TYPE_WPA2_TKIP_ENT
WPA2 enterprise security with TKIP
ENC_TYPE_WPA2_AES_ENT
WPA2 enterprise security with AES
ENC_TYPE_WPA2_MIXED_ENT
WPA2 enterprise security with TKIP and AES
ENC_TYPE_WPS_OPEN
WPS with open security
ENC_TYPE_WPS_SECURE
WPS with AES security
ENC_TYPE_IBSS_OPEN
BSS with open security

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 158 of 202

err_t

The most frequently encountered error codes are defined below:

ERROR_NONE (0)
This means that no error occurred and that execution completed as expected
ERROR_OUT_OF_HEAP_SPACE (3)
This error indicates that you have run out of heap memory in Feather Lib
ERROR_NOT_CONNECTED (20)
You will get this error if you try to perform an operation that requires a connection to an AP or the Internet when
you aren't connected.
ERROR_WWD_INVALID_KEY (1004)
You will get this error if the password you provided for your AP is invalid
ERROR_WWD_AUTHENTICATION_FAILED (1006)
You will get this error if authentication failed trying to connect to the AP
ERROR_WWD_NETWORK_NOT_FOUND (1024)
You will get this error if the requested AP could not be found in an AP scan. A likely cause of this error message
is that you are out of range of the AP.
ERROR_WWD_UNABLE_TO_JOIN (1025)
You will get this error if you are unable to join the requested AP. A likely cause of this error message is that you
are out of range of the AP.
ERROR_WWD_ACCESS_POINT_NOT_FOUND (1066)
This error message indicates that the requested AP could not be found
ERROR_TLS_UNTRUSTED_CERTIFICATE (5035)
Indicates that the certificate from the remote secure server could not be validated against any of the root
certificates available to WICED. You may need to add another root certificate via Feather.addRootCA(...).
ERROR_SDEP_INVALIDPARAMETER (30002)
This error indicates that an invalid parameter was provided to the underlying SDEP command, or a parameter
was rejected by the command handler.

There are hundreds of other possible error codes, and they can't all be documented here, but using the .errno()
and .errstr() functions in AdafruitFeather you can get either the 16-bit error code or a string that provides a basic
description for that error code.

The following code shows how you might use a combination of .errno() and .errstr() to handle common error codes:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 159 of 202

wl_ap_info_t

Access points are described with the following typedef/struct, which you may need to access on certain specific
occasions:

// Attempt to connect to the AP
if (Feather.connect("SSID", "PASSWORD", ENC_TYPE_AUTO))
{
 int8_t rssi = Feather.RSSI();
 uint32_t ipAddress = Feather.localIP();
 // Do something now that you are connected to the AP!
}
else
{
 // Display the error message
 err_t err = Feather.errno();
 Serial.println("Connection Error:");
 switch (err)
 {
 case ERROR_WWD_ACCESS_POINT_NOT_FOUND:
 // SSID wasn't found when scanning for APs
 Serial.println("Invalid SSID");
 break;
 case ERROR_WWD_INVALID_KEY:
 // Invalid SSID passkey
 Serial.println("Invalid Password");
 break;
 default:
 // The most likely cause of errors at this point is that
 // you are just out of the device/AP operating range
 Serial.print(Feather.errno());
 Serial.print(":");
 Serial.println(Feather.errstr());
 break;
 }
}

typedef struct ATTR_PACKED
{
 char ssid[WIFI_MAX_SSID_LEN+1];
 uint8_t bssid[6];
 int16_t rssi;
 uint32_t max_data_rate;
 uint8_t network_type;
 int32_t security;
 uint8_t channel;
 uint8_t band_2_4ghz;
} wl_ap_info_t;

WIFI_MAX_SSID_LEN is equal to 32 and is set in adafruit_feather.h

Each AP described using this typedef will require 52 bytes of memory

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 160 of 202

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 161 of 202

Python Tools
A set of python based tools are included as part of the WICED Feather SDK. You generally only need to use these
tools in very specific circumstances, but they are listed below and then discussed in further detail elsewhere in this
learning guide.

On Windows, the BSP package that contains the tools folder is normally found in the

%LOCALAPPDATA%\Arduino15\packages\adafruit\hardware\wiced\version

folder. On OS X it can usually be found in the

~/Library/Arduino15/packages/adafruit/hardware/wiced/version

folder.

pyresource.py (Convert static files to C headers)

pyresource.py can be used to recursively convert text and binary files into C headers that can be used by modules like
AdafruitHTTPServer. These files can then be embedded as part of your user sketch, and served as resources like
images, HTML or JavaScript content, etc.

For more information see the dedicated pyresource.py page (https://adafru.it/qoD) in this guide.

pycert.py (Python TLS Certificate Converter)

pycert.py is a python tool that will retrieve the root certificate chain for a specific domain, converting it into a byte array
and placing it in a standard C header file.

This header file can then be referenced in your code, and added to the default WICED root certificate list (via
Feather.addRootCA) that validates security data sent from secure domains and websites.

For more information see the dedicated pycert.py page (https://adafru.it/peF) in this guide.

feather_dfu.py (Python USB DFU Utility)

This python tool is used by the Arduino IDE to perform common operations like resetting into DFU mode, updating the
flash contents of the MCU, performing a factory reset, or getting some basic information about the modules.

While the tool is intended to be used by the Arduino IDE, you are also free to use it from the command line.

For more information see the dedicated feather_dfu.py page (https://adafru.it/qtA) in this guide.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 162 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/pyresource-dot-py
file:///introducing-the-adafruit-wiced-feather-wifi/pycert-dot-py
file:///introducing-the-adafruit-wiced-feather-wifi/feather-dfu-dot-py

pyresource.py
This tool will recursively scan the contents of a folder, and convert any files found into ' HTTPResource ' entries that can
be used with modules like the AdafruitHTTPServer (https://adafru.it/qoE).

Location: /tools/pyresource/pyresource.py

Usage

This tool accepts a single argument: the path to the folder where the files you wish to convert (recursively) are stored,
relative to the current directory.

All HTTPResource header files will be written to the folder that the script is executed from.

As an example, if you place all of your static files in the 'resources' folder of your Arduino sketch, and you wish to
generate a set of HTTPResource records in the main sketch folder (one level higher than resources) you would run the
tool as follows:

Assuming the same D3Graphic example mentionned above, this would generate the following output:

On Windows, the BSP package that contains the tools folder is normally found in the
'%APPDATA%\Arduino15\packages\adafruit\hardware\wiced\0.6.0' folder. On OS X it can usually be found in
the '~/Library/Arduino15/packages/adafruit/hardware/wiced/0.6.0' folder.

This tool was added in version 0.6.0 of FeatherLib

Note that when using this tool folder separators ('/' or '\') will be converted to '_dir_' and spaces and periods
will be converted to '_'.

Usage: pyresource.py [OPTIONS] DIR

 Adafruit Python HTTP Resource Tool

 This tool recursively converts the folder contents into HTTP server
 resources in a C header format. These headers can then be imported into
 WICED Feather HTTP server sketches.

 Example of recursively converting the contents of the 'resources' folder:

 $ python pyresource.py resources

Options:
 --help Show this message and exit.

Run from 'libraries/AdafruitWicedExamples/HTTPServer/D3Graphic'
$ python ../../../../tools/pyresource/pyresource.py resources

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 163 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver

HTTPResource Records

Looking at the example above, we can see that three static files were converted to headers and HTTPResource

records ('d3.min.js', 'favicon.ico', and 'index.html').

Each output header file contains a single HTTPResource , which has the binary equivalent of the file encoded inside it.

For example, for favicon_ico.h we get a 10990 byte long HTTPResource named favicon_ico , shown below:

HTTPResource Collection: resources.h

The tool will also generate a single header file named resources.h, which is the only file that you need to reference in
your sketch.

The resources.h file lists all of the HTTPResource records available, and you can then insert these resources into a
page collection for your sketch, adding them to the AdafruitHTTPServer (https://adafru.it/qoE) individually or as a list.

The tool will attempt to automatically determine the MIME type for the file based on the file extension, selecting from
the list of MIME types supported by FeatherLib.

Using the example from above, we would get the following content in resources.h from D3Graphic:

Looking for files in 'resources'
Converted 'resources/d3.min.js' to '_d3_min_js.h'
Converted 'resources/favicon.ico' to 'favicon_ico.h'
Converted 'resources/index.html' to 'index_html.h'
Wrote resource index to 'resources.h'

/* Auto-generated by pyresource. Do not edit this file. */
const uint8_t favicon_ico_data[10990] = {
 0x00, 0x00, 0x01, 0x00, 0x03, 0x00, 0x10, 0x10, 0x00, 0x00, 0x01, 0x00, 0x08,
 0x00, 0x68, 0x05, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0x20, 0x20, 0x00, 0x00,
 // ... data removed for brevity ...
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00
};

const HTTPResource favicon_ico(favicon_ico_data, 10990);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 164 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver#adding-pages

For details on using the static content references in resources.h, see the appropriate section in
the AdafruitHTTPServer (https://adafru.it/qoE) classes documentation.

#ifndef _RESOURCE_H_
#define _RESOURCE_H_

/* Auto-generated by pyresource. Do not edit this file. */

#include "http_common.h"
#include "_d3_min_js.h"
#include "favicon_ico.h"
#include "index_html.h"

/* HTTPPage collection from generated headers

HTTPPage("/d3.min.js", HTTP_MIME_JAVASCRIPT, &_d3_min_js),
HTTPPage("/favicon.ico", HTTP_MIME_IMAGE_MICROSOFT, &favicon_ico),
HTTPPage("/index.html", HTTP_MIME_TEXT_HTML, &index_html),

*/

#endif /* ifndef _RESOURCE_H_ */

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 165 of 202

file:///introducing-the-adafruit-wiced-feather-wifi/adafruithttpserver#adding-pages

pycert.py
pycert.py is a python tool that will retrieve the root certificate chain for a specific domain, converting it into a byte array
and placing it in a standard C header file.

This header file can then be referenced in your code, and added to the default WICED root certificate list (via
Feather.addRootCA) that validates security data sent from secure domains and websites.

Location: /tools/pycert/pycert.py

Downloading the Root Certificate for a Domain

The most common command used with pycert.py is download , which accepts one or more domain names as a
parameter, downloads the certificate chain for that domain, and then converts the root certificate(s) into a single
header file.

Parameters

The ' download ' command has the following parameters:

Usage

To download and convert the root certificate for adafruit.com, for example, you would issue the following command:

On Windows, the BSP package that contains the tools folder is normally found in the
'%APPDATA%\Arduino15\packages\adafruit\hardware\wiced\0.6.0' folder. On OS X it can usually be found in
the '~/Library/Arduino15/packages/adafruit/hardware/wiced/0.6.0' folder..

If you are using this tool on Windows you will need to install pyopenssl via 'pip install pyopenssl' from the
command line.

Usage: pycert.py download [OPTIONS] [DOMAIN]...

 -p, --port INTEGER port to use for reading certificate (default
 443, SSL)
 -c, --cert-var TEXT name of the variable in the header which will
 contain certificate data (default: rootca_certs)
 -l, --cert-length-var TEXT name of the define in the header which will
 contain the length of the certificate data
 (default: ROOTCA_CERTS_LEN)
 -o, --output FILENAME name of the output file (default:
 certificates.h)
 -f, --full-chain use the full certificate chain and not just the
 root/last cert (default: false, root cert only)
 -d, --keep-dupes write all certs including any duplicates across
 domains (default: remove duplicates)
 --help Show this message and exit.

$ python pycert.py download adafruit.com

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 166 of 202

If you want to change the output filename (in case you have multiple header files to deal with), and convert two
domains at the same time into a single header file, you would issue the following command:

Converting PEM Files

You can also use the convert command to convert a text PEM/.pem file to a C header, which is provided as a
convenience since many browsers will allow you to navigate to a specific domain and export the certificate chain in
.pem format.

Parameters

The ' convert ' command has the following parameters:

Usage

To convert a single .pem file to a C header you could use the following command:

You can also convert multiple .pem files into one C header as follows:

$ pycert download --output data.h google.com adafruit.com

Usage: pycert.py convert [OPTIONS] [CERT]...

 -c, --cert-var TEXT name of the variable in the header which will
 contain certificate data (default: rootca_certs)
 -l, --cert-length-var TEXT name of the define in the header which will
 contain the length of the certificate data
 (default: ROOTCA_CERTS_LEN)
 -o, --output FILENAME name of the output file (default:
 certificates.h)
 -f, --full-chain use the full certificate chain and not just the
 root/last cert (default: false, root cert only)
 -d, --keep-dupes write all certs including any duplicates
 (default: remove duplicates)
 --help Show this message and exit.

$ python pycert.py convert foo.pem

$ python pycert.py convert foo.pem bar.pem

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 167 of 202

feather_dfu.py

This python tool is used by the Arduino IDE to perform common operations like resetting into DFU mode, updating the
flash contents of the MCU, performing a factory reset, or getting some basic information about the modules.

While the tool is intended to be used by the Arduino IDE, you are also free to use this tool from the command line.

Location: /tools/feather_dfu/feather_dfu.py

Commands

feather_dfu.py exposes the following commands:

arduino_upgrade

This command will flash your user code (the code compiled in the Arduino IDE) to the appropriate section in flash
memory.

You must provide a .bin file as an argument with this command, for example:

featherlib_upgrade

This command will flash the FeatherLib section of flash memory.

You must provide an appropriate .bin file as an argument with this command, for example:

enter_dfu

Causes the WICED Feather to enter DFU mode. You will know if you are in the special DFU/Bootloader mode because
the LED will blinky at a faster than normal rate.

WINDOWS USERS: Recent versions of the BSP include a pre-compiled version of feather_dfu for Windows. If
you are using Windows as a platform, look in the 'tools/win32-x86/feather_dfu' folder for the executable file
to use.

On Windows, the BSP package that contains the tools folder is normally found in the
'%APPDATA%\Local\Arduino15\packages\adafruit\hardware\wiced\0.6.0' folder. On OS X it can usually be
found in the '~/Library/Arduino15/packages/adafruit/hardware/wiced/0.6.0' folder..

'feather_dfu.py' depends on 'sdep.py' in the same directory, which handles sending SDEP commands over
USB. If you wish to talk to the WICED Feather over USB using SDEP commands, this may be a useful
reference to look at.

$ python feather_dfu.py arduino_upgrade mycode.bin

$ python feather_dfu.py featherlib_upgrade ../../stm32/featherlib/featherlib.bin

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 168 of 202

info

Running this command will provide some basic information about your WICED Feather, and can be used when trying to
debug issues in the support forums, etc.

When you run the ' info ' command you will see results resembling the following:

In order of appearance these values signify:

The firmware family (normally 'Feather')
The MCU version (normally 'STM32F205RG*')
The unique serial number for this MCU
The 48-bit HW MAC address for this chip
The bootloader version
The WICED SDK version
The FeatherLib version
The ArduinoCode verison (may be user defined, or may mirror FeatherLib)
The date the flashed FeatherLib was compiled

factory_reset

This command will perform a factory reset on the WICED Feather, erasing the Arduino user code as well as resetting
the non-volatile config memory to factory defaults.

nvm_reset

Resets to non-volatile config memory to factory default settings (but leaves the Arduino user code intact).

reboot

Causes the WICED Feather to perform a HW reset.

$ python feather_dfu.py enter_dfu

$ python feather_dfu.py info
Feather
ST32F205RGY
353231313533470E00430036
44:39:C4:EB:B9:64
0.1.0
3.5.2
0.5.0
0.5.0
Feb 26 2016

$ python feather_dfu.py factory_reset

$ python feather_dfu.py nvm_reset

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 169 of 202

$ python feather_dfu.py reboot

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 170 of 202

SDEP Commands
SDEP commands allow the user code to communicate with the feather lib and vice versa. Normally you never need to
use these commands directly (they are used by the higher level WICED Feather API), but they are documented below
for advanced users and for debugging purposes.

// Generic Commands
SDEP_CMD_RESET = 0x0001, ///< HW reset
SDEP_CMD_FACTORYRESET = 0x0002, ///< Factory reset
SDEP_CMD_DFU = 0x0003, ///< Enter DFU mode
SDEP_CMD_INFO = 0x0004, ///< System information
SDEP_CMD_NVM_RESET = 0x0005, ///< Reset DCT
SDEP_CMD_ERROR_STRING = 0x0006, ///< Get descriptive error string
SDEP_CMD_COMMAND_STRING = 0x0007, ///< Get descriptive SDEP command string

// Hardware Commands
SDEP_CMD_GPIO = 0x0100, ///< Set GPIO
SDEP_CMD_RANDOMNUMBER = 0x0101, ///< Random number

// SPI Flash Commands
SDEP_CMD_SFLASHFORMAT = 0x0200, ///< Format SPI flash memory
SDEP_CMD_SFLASHLIST = 0x0201, ///< List SPI flash contents

// DEBUG Commands
SDEP_CMD_STACKDUMP = 0x0300, ///< Dump the stack
SDEP_CMD_STACKSIZE = 0x0301, ///< Get stack size
SDEP_CMD_HEAPDUMP = 0x0302, ///< Dump the heap
SDEP_CMD_HEAPSIZE = 0x0303, ///< Get heap size
SDEP_CMD_THREADLIST = 0x0304, ///< Get thread information

// WiFi Commands
SDEP_CMD_SCAN = 0x0400, ///< AP scan
SDEP_CMD_CONNECT = 0x0401, ///< Connect to AP
SDEP_CMD_DISCONNECT = 0x0402, ///< Disconnect from AP
SDEP_CMD_APSTART = 0x0403, ///< Start AP
SDEP_CMD_APSTOP = 0x0404, ///< Stop AP
SDEP_CMD_WIFI_GET_RSSI = 0x0405, ///< Get RSSI of current connected signal
SDEP_CMD_WIFI_PROFILE_ADD = 0x0406, ///< Add a network profile
SDEP_CMD_WIFI_PROFILE_DEL = 0x0407, ///< Remove a network profile
SDEP_CMD_WIFI_PROFILE_CLEAR = 0x0408, ///< Clear all network profiles
SDEP_CMD_WIFI_PROFILE_CHECK = 0x0409, ///< Check if a network profile exists
SDEP_CMD_WIFI_PROFILE_SAVE = 0x040A, ///< Save current connected profile to NVM
SDEP_CMD_WIFI_PROFILE_GET = 0x040B, ///< Get AP's profile info
SDEP_CMD_TLS_DEFAULT_ROOT_CA = 0x040C, ///< Enable the default Root CA list
SDEP_CMD_TLS_ADD_ROOT_CA = 0x040D, ///< Add an custom ROOT CA to current Chain
SDEP_CMD_TLS_CLEAR_ROOT_CA = 0x040E, ///< Clear the whole ROOT CA chain

// Gateway Commands
SDEP_CMD_GET_IPV4_ADDRESS = 0x0500, ///< Get IPv4 address from an interface
SDEP_CMD_GET_IPV6_ADDRESS = 0x0501, ///< Get IPv6 address from an interface
SDEP_CMD_GET_GATEWAY_ADDRESS = 0x0502, ///< Get IPv6 gateway address
SDEP_CMD_GET_NETMASK = 0x0503, ///< Get IPv4 DNS netmask
SDEP_CMD_GET_MAC_ADDRESS = 0x0504, ///< Get MAC Address

// Network Commands
SDEP_CMD_PING = 0x0600, ///< Ping
SDEP_CMD_DNSLOOKUP = 0x0601, ///< DNS lookup
SDEP_CMD_GET_ISO8601_TIME = 0x0602, ///< Get time
SDEP_CMD_GET_UTC_TIME = 0x0603, ///< Get UTC time in seconds

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 171 of 202

SDEP_CMD_GET_UTC_TIME = 0x0603, ///< Get UTC time in seconds

// TCP Commands
SDEP_CMD_TCP_CONNECT = 0x0700, ///< Create TCP stream socket and connect
SDEP_CMD_TCP_WRITE = 0x0701, ///< Write to the TCP stream socket
SDEP_CMD_TCP_FLUSH = 0x0702, ///< Flush TCP stream socket
SDEP_CMD_TCP_READ = 0x0703, ///< Read from the TCP stream socket
SDEP_CMD_TCP_DISCONNECT = 0x0704, ///< Disconnect TCP stream socket
SDEP_CMD_TCP_AVAILABLE = 0x0705, ///< Check if there is data in TCP stream socket
SDEP_CMD_TCP_PEEK = 0x0706, ///< Peek at byte data from TCP stream socket
SDEP_CMD_TCP_STATUS = 0x0707, ///< Get status of TCP stream socket
SDEP_CMD_TCP_SET_CALLBACK = 0x0708, ///< Set callback function for TCP connection
SDEP_CMD_TCP_LISTEN = 0x0709,
SDEP_CMD_TCP_ACCEPT = 0x070A,
SDEP_CMD_TCP_PEER_INFO = 0x070B,

// UDP Commands
SDEP_CMD_UDP_CREATE = 0x0800, ///< Create UDP socket
SDEP_CMD_UDP_WRITE = 0x0801, ///< Write to the UDP socket
SDEP_CMD_UDP_FLUSH = 0x0802, ///< Flush UDP stream socket
SDEP_CMD_UDP_READ = 0x0803, ///< Read from the UDP stream socket
SDEP_CMD_UDP_CLOSE = 0x0804, ///< Close UDP stream socket
SDEP_CMD_UDP_AVAILABLE = 0x0805, ///< Check if there is data in UDP stream socket
SDEP_CMD_UDP_PEEK = 0x0806, ///< Peek at byte data from UDP stream socket
SDEP_CMD_UDP_PACKET_INFO = 0x0807, ///< Get packet info of UDP stream socket

// MQTT Commands
SDEP_CMD_MQTTCONNECT = 0x0900, ///< Connect to a broker
SDEP_CMD_MQTTDISCONNECT = 0x0901, ///< Disconnect from a broker
SDEP_CMD_MQTTPUBLISH = 0x0902, ///< Publish a message to a topic
SDEP_CMD_MQTTSUBSCRIBE = 0x0903, ///< Subscribe to a topic
SDEP_CMD_MQTTUNSUBSCRIBE = 0x0904, ///< Unsubscribe from a topic

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 172 of 202

Generic
Reset (0x0001)

Causes a full system reset. An SDEP response message is sent before the system reset is performed.

Command Enum: SDEP_CMD_RESET
Command ID: 0x0001
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

Factory Reset (0x0002)

Performs a factory reset of the device, resetting all config data in non-volatile memory to factory defaults, as well as
erasing the Arduino user code area (leaving the bootloader and feather library intact). A system reset will take place
once the config data has been set to the default values.

Command Enum: SDEP_CMD_FACTORYRESET
Command ID: 0x0002
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

Enter DFU Mode (0x0003)

Causes the board to reset into USB DFU mode.

Command Enum: SDEP_CMD_DFU
Command ID: 0x0003
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

System Information (0x0004)

Returns a string or set of comma-separated strings containing basic system information, such as the firmware version,
the HW MAC address, compilation date, etc.

Command Enum: SDEP_CMD_INFO
Command ID: 0x0004

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 173 of 202

Added: Codebase 0.5.0

Parameters:

Parameter ID

This optional parameter allows you to indicate the specific system information value to be returned.

Mandatory: No
Size: 1 byte
Type: uint8_t

The parameter ID can be one of the following values:

1: Board Name: The board family the firmware was built against
2: MCU Name: The target MCU the firmware was built against
3: Serial: The serial string that uniquely identifies this MCU
4: MAC Address: The HW MAC address for the radio interface
5: Bootloader Version: The bootloader version used
6: SDK Version: The SDK version for the Broadcom WICED WiFi stack
7: Codebase Version: The version for the Adafruit Featherlib
8: Firmware Version: Currently the same as codebase version
9: Build Date: The date when the Featherlib was compiled

Response Message

If no Parameter ID value is provided, the complete list of values will be returned as a comma-separated list of strings in
incrementing order, starting with 1, 'Board Name'.

If a valid Parameter ID is provided, only the corresponding value will be returned.

Return Code(s)

ERROR_NONE if the command executed properly.
ERROR_SDEP_INVALIDPARAMETER if an invalid Parameter ID was provided, or an invalid number of
parameters is provided.

NVM Reset (0x0005)

Resets all config data stored in non-volatile memory to it's default state.

Command Enum: SDEP_CMD_NVM_RESET
Command ID: 0x0005
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

ERROR_NONE if the command executed properly.

Error String (0x0006)

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 174 of 202

Returns a string containing the internal name associated with the supplied 32-bit error code.

Command Enum: SDEP_CMD_ERROR_STRING
Command ID: 0x0006
Added: Codebase 0.5.0

Parameters: None.

Error ID

Indicates the specific error code to be converted to it's internal string representation.

Mandatory: Yes
Size: 4 bytes
Type: uint32_t

Response Message:

If a valid error code is provided, a string representing the enum associated with that value will be returned.

Return Code(s):

ERROR_NONE if the command executed properly.
ERROR_SDEP_INVALIDPARAMETER if an invalid number of parameters is provided.

Generate Random Number (0x0101)

Generates a random 32-bit value using the hardware random number generator on the STM32F2 MCU.

Command Enum: SDEP_CMD_RANDOMNUMBER
Command ID: 0x0101
Added: Codebase 0.5.0

Parameters: None.

Return Code(s):

A 32-bit number generated via the hardware random number generator.

Return Code(s)

ERROR_NONE if the command executed properly.
ERROR_SDEP_INVALIDPARAMETER if an invalid number of parameters is provided.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 175 of 202

Examples
The WICED Feather board support package includes a number of examples to help you get your project up and
running with a minimum of effort.

Accessing the Examples (Arduino 1.6.5)

At present, the BSP installation is a manual process, as described in Get the WICED BSP earlier in this guide. To
access to examples contained in this BSP, you will need to use a different menu path than you normally would:

Accessing the Examples (Arduino >= 1.6.8)

Recent versions of the Arduino IDE (after the 1.6.5 release used during development of this BSP) have changed the
way examples sketches appear. On a newer version of the Arduino IDE (like 1.6.9), the WICED examples will no longer
appear in the 'File > Sketchbook' menu item.

To make the examples visible you must copy the contents of the `hardware/Adafruit_WICED_Arduino/examples` folder
to your local sketchbook folder under a WICED subdirectory, so something like: `sketchbook/WICED/examples'

Example Folders

The examples are broken up into sub-folders to try to keep things organized, although the exact folder structure is
likely to evolve with time so it may not resemble exactly the image shown above.

As of the initial release, the following major folders are present:

Adafruit: This folder contains test code that makes use of some specific Adafruit hardware
AIO: Sketches making use of the Adafruit IO (https://adafru.it/fsU) servers
Hardware: Examples showing how to use the peripherals on the STM32F205 MCU
HTTP: Examples showing how to work with HTTP servers and data
MQTT: Examples showing how to work with MQTT brokers
TCP: Examples showing how to work with TCP sockets and connections
TLS: Examples showing how to work with secure TLS/SSL/HTTPS TCP connections
UDP: Examples related to UDP sockets and connections
WiFi: General purpose wireless examples for the WICED Feather
stm32: This folder contains libraries that are part of the WICED Feather BSP

Making Modifications to the Examples

One side effect of the examples being located outside of the normal examples structure is that any changes you make

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 176 of 202

https://io.adafruit.com/

to your sketch will be saved to the original example file.

If you need to revert back to the original example, you may need to copy the code back from the original github repo.
 The examples code can always be seen here:

https://adafru.it/B0u

https://adafru.it/B0u

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 177 of 202

https://github.com/adafruit/Adafruit_WICED_Arduino/tree/master/libraries/AdafruitWicedExamples

ScanNetworks
This example (found in the Adafruit_WICED_Arduino/examples/WiFi folder) will scan for access points in range of the
WICED Feather.

Setup

No particular setup is required for this sketch since it scans for available access points within range of the WICED
Feather.

Compile and Flash

You can compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the
Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to start scanning for access points in range:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 178 of 202

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 179 of 202

Ping
This example (found in the Adafruit_WICED_Arduino/examples/WiFi folder) will ping the specified servers and display
the ping response time(s).

Setup

Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the values used by you own access
point:

By default the sketch will ping adafruit.com and two Google domain name servers (8.8.8.8 and 8.8.4.4). If you wish to
change the server(s) used, simply replace the values assigned in the variables below:

Compile and Flash

You can then compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the
IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the
Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then it will attempt to ping the

#define WLAN_SSID "YOURSSID"
#define WLAN_PASS "YOURPASSWORD"

// Ping target by hostname
const char target_hostname[] = "adafruit.com";

// Ping target by IP String
const char target_ip_str[] = "8.8.8.8";

// Ping target by IPAddress object
IPAddress target_ip(8, 8, 4, 4);

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 180 of 202

specified server(s):

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 181 of 202

GetHostByName
This example (located in Adafruit_WICED_Arduino/examples/WiFi) will perform a DNS lookup based on the specified
domain name or IP address.

Setup

Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the values used by you own access
point:

Set the domain name or the IP address that you wish the resolve using the following variables:

Compile and Flash

You can then compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the
IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the
Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then it will attempt to look up the
specified domain or IP address:

 #define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

// target by hostname
const char target_hostname[] = "adafruit.com";

// target by IP String
const char target_ip_str[] = "8.8.8.8";

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 182 of 202

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 183 of 202

HttpGetPolling
This example (located in Adafruit_WICED_Arduino/examples/HTTP) will connect to an HTTP server and read the
specified page using 'polling' (as opposed to using callbacks).

Setup

Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the values used by you own access
point:

Set the domain name or the IP address, the page and the port that you wish the resolve using the following variables:

Compile and Flash

You can then compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the
IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the
Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then it will attempt to retrieve the
specified web page:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

#define SERVER "www.adafruit.com" // The HTTP server to connect to
#define PAGE "/testwifi/index.html" // The HTTP resource to request
#define PORT 80 // The TCP port to use

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 184 of 202

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 185 of 202

HttpGetCallback
This example (located in Adafruit_WICED_Arduino/examples/HTTP) will connect to an HTTP server and read the
specified page using 'callbacks' (as opposed to using polling).

Setup

Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the values used by you own access
point:

Set the domain name or the IP address, the page and the port that you wish the resolve using the following variables:

Compile and Flash

You can then compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the
IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the
Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then it will attempt to retrieve the
specified web page:

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

#define SERVER "www.adafruit.com" // The HTTP server to connect to
#define PAGE "/testwifi/index.html" // The HTTP resource to request
#define PORT 80 // The TCP port to use

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 186 of 202

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 187 of 202

HTTPSLargeData
The example (located in the Adafruit_WICED_Arduino/examples/TLS folder) uses the AdafruitHTTP helper class and
TLS to connect to a secure server and request a large file, which is then read using callbacks.

It tries to calculate the throughput for the specified file, which can be 10KB, 100KB or 1MB (indicate the file you wish to
use before compiling the sketch).

Setup

Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the values used by you own access
point:

Next change the FILE_ID flag to indicate which file you want to load. Valid options are '0', '1', or '2':

Compile and Flash

You can then compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the
IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

#define FILE_ID 1

// S3 server to test large files,
const char * file_arr[] =
{
 [0] = "/text_10KB.txt" ,
 [1] = "/text_100KB.txt" ,
 [2] = "/text_1MB.txt" ,
};

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 188 of 202

Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then make a secure (TLS based)
connection and request to the Amazon S3 server for the specified file:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 189 of 202

Throughput
The throughput example (located in the Adafruit_WICED_Arduino/examples/WiFi folder) uses AdafruitTCP to test the
TCP throughput between the WICED Feather and another device running 'netcat', which simply listens for incoming
TCP data on the specified port.

Setup

Set your AP details using the WLAN_SSID and WLAN_PASS flags, setting them to the values used by you own access
point:

You also need to set the IP address and port of the server you will be connecting to (the machine where you will be
running netcat):

Running Netcat

Before using this sketch you will need to start netcat and tell it to start listening on the pre-determined port, which can
be done with the following command:

Depending on the version of netcat you are using, you may or may not seeing any feedback right away, but once
netcat starts any incoming characters received will be echoed back to the command line, as shown in the example
below:

To stop netcat (once the test is complete) simply hit CTRL+C.

Compile and Flash

You can then compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

// your local PC's IP to test the throughput
// Run this command to create a server on your PC
// > nc -l 8888

IPAddress server_ip(10, 0, 1, 27);
const uint16_t port = 8888;

$ nc -l 8888

00
11
22
33
44
55
66
77
88
99

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 190 of 202

IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Wait a few seconds for the USB CDC serial interface to enumerate, and then open the Serial Monitor using either the
Serial Monitor icon in the upper-right of the IDE or via Tools > Serial Monitor:

This will cause the WICED Feather to attempt to connect to the access point, and then it will attempt to connect to the
netcat TCP Server:

At this point go to the top of the serial monitor and enter any character into the text box at the top and click the SEND

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 191 of 202

button to start sending 1MB of data to netcat:

This will start the throughput test, which will display the calculated KB per second from the transfer:

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 192 of 202

FeatherOLED
The FeatherOLED example (located in the Adafruit_WICED_Arduino/examples/Adafruit folder) uses the
Adafruit_FeatherOLED (https://adafru.it/m3b) library to display basic information about the WICED Feather on the
128x32 I2C OLED Feather Wing (http://adafru.it/2900).

This advanced example demonstrates several useful concepts and libraries for the WICED Feather:

How to monitor the LIPO battery level
How to work with an external OLED display for easy user feedback
How to work with the Adafruit Unified Sensor Library (https://adafru.it/dGB) to retrieve sensor data
How to work with MQTT (https://adafru.it/m3c) to push data to Adafruit IO (https://adafru.it/m3d)

This example optionally uses a TSL2561 light sensor (http://adafru.it/439) to generate real sensor data, but it should be
relatively straight forward to use a different unified sensor driver, or you can disable the sensor entirely if you wish to
simply use the OLED or send simulated sensor data.

Setup

Before you can use the FeatherOLED sketch you will have to install the
Adafruit_FeatherOLED (https://adafru.it/m3b) library into your libraries folder. If you're new to Arduino our Arduino
Libraries Learning Guide (https://adafru.it/m3e) explains everything you need to know to get Adafruit_FeatherOLED
installed on your local system.

Setting the Access Point

Once you have Adafruit_FeatherOLED installed on your system, you need to set your AP details using the WLAN_SSID
and WLAN_PASS flags in the example sketch, setting them to the values used by you own access point:

Enabling LIPO Battery Monitoring (Optional)

If you wish to monitor the LIPO cell voltage level, you will also need to enable the VBAT_ENABLED flag by setting its
value to '1':

Important: Make sure that the BATADC solder jumper on the bottom of your WICED Feather is soldered shut as well,
since this will run the LIPO cell through a voltage divider and into the ADC pin on PA1. See the Board Layout page for
details, but the solder jumper can be seen below.

You have to solder these two metal leads together to form a 'bridge':

#define WLAN_SSID "YOUR SSID HERE"
#define WLAN_PASS "YOUR SSID KEY HERE"

#define VBAT_ENABLED 1
#define VBAT_PIN PA1

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 193 of 202

https://github.com/adafruit/Adafruit_FeatherOLED
https://www.adafruit.com/products/2900
file:///using-the-adafruit-unified-sensor-driver/introduction
file:///mqtt-adafruit-io-and-you/overview
file:///adafruit-io/mqtt-api
https://www.adafruit.com/products/439
https://github.com/adafruit/Adafruit_FeatherOLED
file:///adafruit-all-about-arduino-libraries-install-use/how-to-install-a-library

Enabling the TSL2561 Luminosity Sensor (Optional)

You can also enable the TSL2561 light sensor (http://adafru.it/439) to demonstrate how to work with the
Adafruit_Sensor library to read sensor data on the WICED Feather.

To enable the TSL2561 in your sketch, simply set the SENSOR_TSL2561_ENABLED flag to '1':

This will cause the WICED Feather to read a new data sample from the TSL2561 every ten (10) seconds.

The TSL2561 should be connected to the WICED Feather as follows:

TSL2561 SCL to WICED SCL
TSL2561 SDA to WICED SDA
TSL2561 VIN to WICED 3V
TSL2561 GND to WICED GND

Enabling MQTT to Adafruit IO (Optional)

You can optionally push the sensor data to Adafruit IO using the AdafruitAIO helper class.

To enable MQTT (https://adafru.it/m3c) to Adafruit IO support simply set the AIO_ENABLED flag to '1':

You also need to enter your AIO Username and your AIO key, as well as the target feeds that data should be published
to:

For more information on communication with Adafruit IO via MQTT see the Adafruit IO MQTT API (https://adafru.it/m3d).

Compile and Flash

#define SENSOR_TSL2561_ENABLED 1

#define AIO_ENABLED 1

#define AIO_USERNAME "...your AIO username (see https://accounts.adafruit.com)..."
#define AIO_KEY "...your AIO key..."

#define FEED_VBAT "vbat"
#define FEED_TSL2561_LUX "lux"

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 194 of 202

https://www.adafruit.com/products/439
file:///mqtt-adafruit-io-and-you/overview
file:///adafruit-io/mqtt-api

You can compile and flash your sketch to the WICED Feather using the 'Download' arrow icon at the top of the IDE:

You should see the USB DFU progress as the update advances, and there will be a 'Done Uploading' message in the
top left of the status bar when you are done:

Testing the Sketch

Unlike many of the example sketches, this example will not wait for the USB CDC Serial Port to open before executing
the code.

If you have an OLED display properly connected, data should appear on it as soon as the USB DFU flash update
process is completed:

The data rendered on the display will depend on the way that you configure the example sketch, but the top
and bottom lines are reserved for WiFi and LIPO information, and the two middle lines (referred to as the
'Message Area' in Adafruit_FeatherOLED) can be used to render any text or messages.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 195 of 202

FAQs
I bricked my board. Can I force the device into DFU mode?

Yes. There are several ways to force the device into DFU mode if you somehow lock the board up with a faulty
firmware image:

Quickly double-click the RESET button on the board
Set the DFU Pin to GND and reset the device (keeping DFU to GND during startup)
Connect to the USB CDC interface at 1200 baud and disconnect. This magic baud rate signals to the module
that we want to reset into DFU mode.
Use the python script in 'tools/feather_dfu' to enter DFU mode:
$ python feather_dfu.py enter_dfu

Forcing the device into DFU mode should allow you to reflash the FeatherLib or user code and recover control of
your hardware.

What TLS Version does the WICED Feather support?

The WICED Feather supports the latest and greatest TLS 1.2 standard, which gives you access to the fastest and
most secure encryption. It also supports TLS 1.1, TLS 1.0, and SSL 3.0. SSL 2.0 is not supported.

The WICED Feather supports the following cipher suites with TLS 1.2:

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

You can verify the TLS level yourself by pointing your WICED Feather to https://www.howsmyssl.com or
https://www.ssllabs.com/ssltest/viewMyClient.html and examining the HTML output. Note: You'll need to generate
custom root certificates to access these domains, and you can read the output with the TLS/HttpCustomRootCA
example.

When I try to build I'm getting: Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-none-eabi-g++"
(in directory "."): CreateProcess error=2, The system cannot find the file specified

This is probably because you don't have the ARM Cortex M3 toolchain installed. Install the necessary GCC toolchain
for ARM from the Arduino Board Manager via: Tools->Board->Board Manager then download Arduino SAM Boards
(32-bits ARM Cortex-M3)

When I try to flash using USB DFU I get the following error from feather_dfu.py: Traceback (most recent call last):
File "...\hardware\Adafruit_WICED_Arduino/tools/feather_dfu.py", line 1, in import usb.backend.libusb1

Note: You will know when you are in DFU mode since the on board status LED will start blinking at a rate of
5Hz.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 196 of 202

https://www.howsmyssl.com/
https://www.ssllabs.com/ssltest/viewMyClient.html

This is probably caused by an old version of pyusb. Update your pyusb version to 1.0b or higher via the following
command:

$ pip install --upgrade pyusb

You also need to make sure that you have the libusb runtime dll installed on your system, which you can do via this
libusb installer. See the Windows Setup page for details on using this installer though.

My board isn't enumerating as a USB device, or is stuck in DFU mode. How can I re-flash the FeatherLib firmware
directly using dfu-util and restore my device?

You can reflash FeatherLib from the command line by forcing your device into DFU mode. See the first FAQ on this
page for various ways to do this. Once in DFU mode (you'll know you're in DFU mode due to the constant blinky on
the status LED), you can use dfu-util to flash a binary image to the WICED Feather using the following command
syntax:

$ dfu-util -a 0 -s 0x08010000:leave -D featherlib.bin

0x08010000 is that start of the feather lib memory section (see the memory map in System Architecture in this
learning guide for details). To flash a user code binary you would change this value to 0x080E0000.

The 'featherlib.bin' image is available in the 'stm32/featherlib' folder. If you were running this from inside the
/tools/feather_dfu folder you would execute this command as follows:

$ dfu-util -a 0 -s 0x08010000:leave -D ../../stm32/featherlib/featherlib.bin

If you have more than one DFU capable device on your system you can specify the exact USB VID and PID by
adding the following flag:

-d 239a:0008

0x239A is the Vendor ID, and 0x0008 is the Product ID in DFU mode. You can verify the VID and PID values via
`dfu-util --list`.

This should result in output resembling the following;

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 197 of 202

https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/libusb-win32-devel-filter-1.2.6.0.exe/download
file:///introducing-the-adafruit-wiced-feather-wifi/windows-setup#install-libusb-0-dot-1-runtime
https://github.com/adafruit/Adafruit_https://github.com/adafruit/Adafruit_WICED_Arduino/tree/master/featherlib

dfu-util 0.8

Copyright 2005-2009 Weston Schmidt, Harald Welte and OpenMoko Inc.
Copyright 2010-2014 Tormod Volden and Stefan Schmidt
This program is Free Software and has ABSOLUTELY NO WARRANTY
Please report bugs to dfu-util@lists.gnumonks.org

dfu-util: Invalid DFU suffix signature
dfu-util: A valid DFU suffix will be required in a future dfu-util release!!!
Opening DFU capable USB device...
ID 239a:0008
Run-time device DFU version 011a
Claiming USB DFU Interface...
Setting Alternate Setting #0 ...
Determining device status: state = dfuIDLE, status = 0
dfuIDLE, continuing
DFU mode device DFU version 011a
Device returned transfer size 1024
DfuSe interface name: "Internal Flash "
Downloading to address = 0x08010000, size = 464516
Download [=========================] 100% 464516 bytes
Download done.
File downloaded successfully
Error during download get_status

At this point you have reflashed the FeatherLib section of code, and you should be able to flash your own code from
the Arduino IDE in the 'User Code' section of flash memory.

How can I reflash the bootloader with a JLink or STLink/V2 from the Arduino IDE?

To reflash the bootloader on your WICED Feather using the Arduino IDE perform the following steps:

First install AdaLink on your system, which is an abstraction layer that we provide to hide the details of different ARM
hardware debuggers. If you have a choice, a Segger JLink is generally more reliable as a HW debugger and works
across a larger variety of systems. The STLink with OpenOCD has issues with OS X El Capitan due to the new USB
stack, for example.

To connect an STLink/V2 to the WICED Feather:

Connect SWCLK on the STLink to SWCLK on the WICED Feather (which is a single 0.1" hole off the main

NOTE: The WICED Feather also requires a valid user sketch (some Arduino code) to run, so after flashing the
FeatherLib you will also need to compile and flash a sketch from the Arduino IDE for your board to start
running. Powering up a board with only FeatherLib but no user sketch will end up in a 'dead-end' situation
since it can't find any user code to execute.

Note++: Unlike many other Arduino compatible boards, you don't need a serial port to flash sketches from the
Arduino IDE! The WICED Feather uses USB DFU, NOT the serial port for firmware updates! Don't worry if you
don't see a serial port when you are trying to flash a sketch the first time.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 198 of 202

https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/products/2548

header rail)
Connect SWDIO on the STLink to SWDIO on the WICED Feather
Connect GND on the STLink to GND on the WICED Feather
Connect RST on the STLink to RST on the WICED Feather
Power both the WICED Feather and STLink using USB

To connect a Segger J-Link to the WICED Feather:

Consult the Segger JLink SWD and SWO Pinout for your JLink
Connect SWCLK on the JLink to SWCLK on the WICED Feather (which is a single 0.1" hole off the main header
rail)
Connect SWDIO on the JLink to SWDIO on the WICED Feather
Connect GND on the JLink to GND on the WICED Feather
Connect VTRef on the JLink to 3V on the WICED Feather (important!)
Connect RST on the JLink to RST on the WICED Feather
Power both the WICED Feather and JLink using USB

From the Arduino IDE:

Make sure 'Tools > Boards' is set to 'Adafruit WICED Feather'
In 'Tools > Programmer' select either 'STLinkV2 with AdaLink' or 'JLink with AdaLink'.
Click the 'Tools > Burn Bootloader' menu entry, which shoud use AdaLink and either the STLink/V2 or JLink to
flash the bootloader on your board.

How can I flash the bootloader using AdaLink directly?

You can also flash the bootloader from the command-line using AdaLink directly.

Make sure AdaLink is properly setup on your system (see the readme file in the Github repo).
Find the bootloader.hex file in the bootloader folder.
Connect either a STLink/V2 or Segger JLink to your WICED Feather (see the FAQ entry above for connection
details)
With the debugger connected and both the debugger and WICED Feather powered, enter the following
command (adjusting the path to bootloader.hex if required):

For an STLink/V2:

adalink stm32f2 -p stlink -h bootloader.hex

For a Segger JLink:

adalink stm32f2 -p jlink -h bootloader.hex

You can check if AdaLink is properly connected to the WICED Feather with the following commands:

For an STLink/V2:

adalink stm32f2 -p stlink -i

For a Segger JLink:

adalink stm32f2 -p jlink -i

I get 'OSError: [Errno 2] No such file or directory OSError: [Errno 2] No such file or directory' when trying to use

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 199 of 202

https://www.adafruit.com/products/1369
https://www.segger.com/interface-description.html
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_WICED_Arduino/tree/master/bootloader

feather_dfu.py in the Arduino IDE. What should I do?

If you get the following error in the Arduino IDE when trying to flash a sketch, you probably don't have dfu-util
installed on your system:

OSError: [Errno 2] No such file or directory
OSError: [Errno 2] No such file or directory

Install dfu-util as detailed in this guide for your target OS.

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 200 of 202

Downloads
Related Documents

STM32F205RG Product Page (https://adafru.it/m9A)
STM32F205 Datasheet (https://adafru.it/m9B)
EagleCAD PCB files on GitHub (https://adafru.it/oer)
Fritzing object available in the Adafruit Fritzing Library (https://adafru.it/aP3)

https://adafru.it/z4f

https://adafru.it/z4f

Schematic

The schematic for the latest WICED Feather board is shown below. Click the image for a higher resolution version.

Fabrication Print

Dimensions in Inches

© Adafruit Industries https://learn.adafruit.com/introducing-the-adafruit-wiced-feather-wifi Page 201 of 202

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00237391.pdf
https://github.com/adafruit/Adafruit-WICED-WiFi-Feather-PCB
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/046/214/original/Wiced_WiFi_Pinout_v1.2.pdf?1504807346

© Adafruit Industries Last Updated: 2018-08-22 03:52:40 PM UTC Page 202 of 202

	Guide Contents
	Overview
	Board Layout
	Pin Multiplexing
	Accessing Pins in Software

	Power Config
	LIPO Cell Power Monitoring (A1)

	16 Mbit (2MByte) SPI Flash
	PWM Outputs
	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Get the WICED BSP
	Adding Adafruit Board Support
	Add the Adafruit BSP List
	Add the Adafruit WICED BSP

	Upgrading From Earlier WICED BSP Releases (<0.6.0)
	Windows Setup
	Install Adafruit Windows Drivers
	Install libusb 0.1 Runtime
	Install Python 2.7
	Testing the Python Installation

	Install Python Tools
	Testing the Installation

	Optional: Install AdaLink
	Setup Problems
	I can get my device in DFU mode (fast blinky on the red LED), but the two USB CDC (COM) ports never enumerate. I have the USB drivers installed, though. What's wrong?

	OS X Setup
	Install dfu-util
	Testing the Installation

	Install Python Tools
	Testing the Installation

	Optional: Install AdaLink
	Linux Setup
	UDEV Setup
	Install dfu-util
	Building dfu-util From Source (Ubuntu 14.04 etc.)
	Testing the Installation

	Install Python Tools (BSP <= 0.6.2)
	Testing the Installation

	Optional: Install AdaLink
	External Resources
	Arduino IDE Setup
	Board Selection
	Setting the 'Section'
	Selecting the Serial Port
	Optional: Updating the Bootloader
	Compiling your Sketch
	System Architecture
	WICED WiFi + RTOS + SDEP = FeatherLib
	Arduino User Code
	Inter Process Communication (SDEP)
	Flash Memory Layout
	User Code (256KB + 20KB SRAM)
	Feather Lib (704 KB + 108KB SRAM)
	Config Data (32KB)
	USB DFU Bootloader (32KB)

	USB Setup
	DFU Mode (Fast Blinky)
	Normal Operating Mode (User Code)

	Flash Updates
	WICED Feather API
	AdafruitFeather
	AdafruitTCP
	AdafruitUDP
	AdafruitHTTP
	AdafruitMQTT
	AdafruitAIO
	AdafruitSDEP
	Client API
	AdafruitFeather
	AdafruitFeather API
	Firmware Version Management
	char const* bootloaderVersion (void)
	char const* sdkVersion (void)
	char const* firmwareVersion (void)
	char const* arduinoVersion (void)

	Scanning
	int scanNetworks (wl_ap_info_t ap_list[], uint8_t max_ap)

	Connecting
	bool connect (void)
	bool connect (const char *ssid)
	bool connect (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
	bool begin (void)
	bool begin (const char *ssid)
	bool begin (const char *ssid, const char *key, int enc_type = ENC_TYPE_AUTO)
	void disconnect (void)

	Network and Connection Details
	bool connected (void);
	uint8_t* macAddress (uint8_t *mac);
	uint32_t localIP (void);
	uint32_t subnetMask (void);
	uint32_t gatewayIP (void);
	char* SSID (void);
	int32_t RSSI (void);
	int32_t encryptionType (void);
	uint8_t* BSSID (uint8_t* bssid);
	DNS Lookup
	IPAddress hostByName (const char* hostname)
	bool hostByName (const char* hostname, IPAddress& result)
	bool hostByName (const String &hostname, IPAddress& result)

	Ping
	uint32_t ping (char const* host)
	uint32_t ping (IPAddress ip)

	Factory Reset
	void factoryReset (void)
	void nvmReset (void)

	Hardware Random Number Generator
	bool randomNumber (uint32_t* random32bit)

	Real Time Clock
	bool getISO8601Time (iso8601_time_t* iso8601_time)
	uint32_t getUtcTime (void)

	TLS Root Certificate Management
	Default Root Certificates
	bool useDefaultRootCA (bool enabled)
	bool initRootCA (void)
	bool addRootCA (uint8_t const* root_ca, uint16_t len)
	bool clearRootCA (void)

	Print Helpers
	void printVersions (Print& p = Serial)
	void printNetwork (Print& p = Serial)
	void printEncryption (int32_t enc, Print& p = Serial)

	AdafruitFeather: Profiles
	Connecting via Profiles
	Profiles API
	bool saveConnectedProfile (void)
	bool addProfile (char* ssid)
	bool addProfile (char* ssid, char* key, wl_enc_type_t enc_type)
	bool removeProfile (char* ssid)
	void clearProfiles (void)
	char* profileSSID (uint8_t pos);
	int32_t profileEncryptionType (uint8_t pos);

	AdafruitTCP
	TCP Socket API
	Packet Buffering
	void usePacketBuffering (bool enable)

	TLS/SSL Certificate Verification
	Verifying Certificates with the WICED Feather (Safer)
	Ignoring Certificate Verification (Easier)
	Default Root Certificates

	void tlsRequireVerification (bool required)

	Socket Handler Functions
	void getHandle (void)

	Client API
	int connect (IPAddress ip, uint16_t port)
	int connect (const char * host, uint16_t port)
	int connectSSL (IPAddress ip, uint16_t port)
	int connectSSL (const char* host, uint16_t port)
	uint8_t connected (void)
	void stop (void)

	Stream API
	int read (void)
	int read (uint8_t * buf, size_t size)
	size_t write (uint8_t data)
	size_t write (const uint8_t *content, size_t len)
	int available (void)
	int peek (void)
	void flush (void)

	Callback API
	void setReceivedCallback (tcpcallback_t fp)
	void setDisconnectCallback (tcpcallback_t fp)
	Callback Function Signatures
	Example: Callback Based HTTP Request

	AdafruitTCPServer
	Constructor
	Functions
	bool begin (void)
	AdafruitTCP accept (void)
	AdafruitTCP available (void)
	void stop (void)
	void setConnectCallback (tcpserver_callback_t fp)

	Example
	AdafruitUDP
	UDP Socket API
	UDP API
	uint8_t begin (uint16_t port)
	void stop (void)
	int beginPacket (IPAddress ip, uint16_t port)
	int beginPacket (const char *host, uint16_t port)
	int endPacket (void)
	int parsePacket (void)
	IPAddress remoteIP (void)
	uint16_t remotePort (void)

	Stream API
	int read (void)
	int read (unsigned char* buffer, size_t len) int read (char* buffer, size_t len)
	int peek (void)
	int available (void)

	void flush (void)
	size_t write (uint8_t byte)
	size_t write (const uint8_t *buffer, size_t size)

	Callback Handlers
	void setReceivedCallback (udpcallback_t fp)

	Examples
	UDP Echo Server

	AdafruitHTTP
	AdafruitHTTP API
	HTTP Headers
	bool addHeader (const char* name, const char* value)
	bool clearHeaders (void)

	HTTP GET Requests
	bool get (char const* url)
	bool get (char const* host, char const* url)

	HTTP POST Requests
	bool post (char const* url, char const* encoded_data)
	bool post (char const* host, char const* url, char const* encoded_data)

	HTTP GET Example
	AdafruitHTTPServer
	AdafruitHTTPServer API
	Constructor
	Adding Pages
	1. HTTPPageRedirect Records (Page Redirection Entries)
	2. HTTPPage Records (Standard Pages)
	Converting Static Content (HTTPResources)
	Implementing Dynamic Page Handlers
	Registering the Pages

	Starting/Stopping the HTTP Server
	Complete Example

	AdafruitMQTT
	Constructors
	Functions
	Connection Management
	bool connected(void)
	bool connect (IPAddress ip, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
	bool connect (const char* host, uint16_t port = 1883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT);
	bool connectSSL (IPAddress ip, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
	bool connectSSL (const char* host, uint16_t port = 8883, bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
	bool disconnect (void)

	Messaging
	bool publish (UTF8String topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, bool retained = false);
	bool subscribe (const char* topicFilter, uint8_t qos, messageHandler mh);
	Subscribe Callback Handler(s)
	Callback Handler Parameters

	bool unsubscribe(const char* topicFilter);

	Last Will
	void will (const char* topic, UTF8String message, uint8_t qos = MQTT_QOS_AT_MOST_ONCE, uint8_t retained = 0);

	Client ID
	void clientID(const char* client)

	Disconnect Callback
	AdafruitMQTT Example
	AdafruitMQTTTopic
	Constructor
	Functions
	void retain (bool on)

	Subscribe Callbacks
	bool subscribe (messageHandler_t mh)
	bool unsubscribe (void)
	bool subscribed (void)

	Publishing Data via 'Print'
	Example
	AdafruitAIO
	Constructor
	Functions

	Connecting
	bool connect (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)
	bool connectSSL (bool cleanSession = true, uint16_t keepalive_sec = MQTT_KEEPALIVE_DEFAULT)

	Feed Management
	bool updateFeed (const char* feed, UTF8String message, uint8_t qos=MQTT_QOS_AT_MOST_ONCE, bool retain=true)
	bool followFeed (const char* feed, uint8_t qos, messageHandler_t mh)
	bool unfollowFeed (const char* feed)

	Example
	AdafruitAIOFeed
	Constructor
	Functions
	bool follow (feedHandler_t fp)
	bool unfollow (void)
	bool followed (void)

	Example
	AdafruitTwitter
	1. Creating a WICED Twitter Application
	Enter the Application Details
	Set the Application Permissions
	Manage the Access Keys
	Copy the Appropriate Key Data
	Create your Access Token

	2. Using the AdafruitTwitter Class
	AdafruitSDEP
	AdafruitSDEP API
	Constructor
	Functions
	sdep
	Examples

	sdep_n
	Examples

	Error Handling Functions
	err_t errno (void)
	char const* errstr(void)
	char const* cmdstr (uint16_t cmd_id)
	void err_actions (bool print, bool halt)

	Error Handling Example
	Client
	Adapting Client Examples
	1. Update Header Includes
	2. Change 'WiFi.*' References to 'Feather.*'
	3. Change WiFiUDP and WiFiTCP Class Types

	Constants
	wl_enc_type_t
	err_t
	wl_ap_info_t
	Python Tools
	pyresource.py (Convert static files to C headers)
	pycert.py (Python TLS Certificate Converter)
	feather_dfu.py (Python USB DFU Utility)
	pyresource.py
	Usage
	HTTPResource Records
	HTTPResource Collection: resources.h
	pycert.py
	Downloading the Root Certificate for a Domain
	Parameters
	Usage

	Converting PEM Files
	Parameters
	Usage

	feather_dfu.py
	Commands
	arduino_upgrade
	featherlib_upgrade
	enter_dfu
	info
	factory_reset
	nvm_reset
	reboot

	SDEP Commands
	Generic
	Reset (0x0001)
	Factory Reset (0x0002)
	Enter DFU Mode (0x0003)
	System Information (0x0004)
	Parameter ID

	NVM Reset (0x0005)
	Error String (0x0006)
	Error ID

	Generate Random Number (0x0101)
	Examples
	Accessing the Examples (Arduino 1.6.5)
	Accessing the Examples (Arduino >= 1.6.8)
	Example Folders
	Making Modifications to the Examples
	ScanNetworks
	Setup
	Compile and Flash
	Testing the Sketch
	Ping
	Setup
	Compile and Flash
	Testing the Sketch
	GetHostByName
	Setup
	Compile and Flash
	Testing the Sketch
	HttpGetPolling
	Setup
	Compile and Flash
	Testing the Sketch
	HttpGetCallback
	Setup
	Compile and Flash
	Testing the Sketch
	HTTPSLargeData
	Setup
	Compile and Flash
	Testing the Sketch
	Throughput
	Setup
	Running Netcat
	Compile and Flash
	Testing the Sketch
	FeatherOLED
	Setup
	Setting the Access Point
	Enabling LIPO Battery Monitoring (Optional)
	Enabling the TSL2561 Luminosity Sensor (Optional)
	Enabling MQTT to Adafruit IO (Optional)

	Compile and Flash
	Testing the Sketch
	FAQs
	I bricked my board. Can I force the device into DFU mode?
	What TLS Version does the WICED Feather support?
	When I try to build I'm getting: Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-none-eabi-g++" (in directory "."): CreateProcess error=2, The system cannot find the file specified
	When I try to flash using USB DFU I get the following error from feather_dfu.py: Traceback (most recent call last): File "...\hardware\Adafruit_WICED_Arduino/tools/feather_dfu.py", line 1, in import usb.backend.libusb1
	My board isn't enumerating as a USB device, or is stuck in DFU mode. How can I re-flash the FeatherLib firmware directly using dfu-util and restore my device?
	How can I reflash the bootloader with a JLink or STLink/V2 from the Arduino IDE?
	How can I flash the bootloader using AdaLink directly?
	I get 'OSError: [Errno 2] No such file or directory OSError: [Errno 2] No such file or directory' when trying to use feather_dfu.py in the Arduino IDE. What should I do?

	Downloads
	Related Documents
	Schematic
	Fabrication Print

