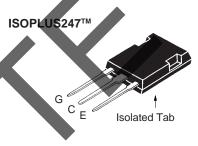


High Voltage IGBT with Diode

IXGR50N160H1

 $V_{CES} = 1600V$ $I_{C110} = 36A$


2.30V

(Electrically Isolated Tab)

Symbol	Test Conditions	Maximum Rati	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	1600	V		
V _{CGR}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{\rm GE}} = 1\text{M}\Omega$	1600	V		
V _{GES}	Continuous	±20	У		
V _{GEM}	Transient	±30	V		
I _{C25}	T _c = 25°C, Lead RMS limit	75	A		
I _{C110}	$T_{\rm C} = 110^{\circ} C$	36	A		
I _{CM}	$T_{\rm C}$ = 25°C, 1ms	330	A		
SSOA	$V_{\rm GE} = 15 \text{V}, T_{\rm VJ} = 125 ^{\circ} \text{C}, R_{\rm G} = 5 \Omega$	I _{CM} = 100	Α		
(RBSOA)	Clamped Inductive Load	@ 0.8 • V _{CES}			
P _c	T _c = 25°C	240	W		
T _J		-55 + 1 5 0	°C		
T_{JM}		150	°C		
T _{stg}		-55 +1 50	°C		
F _c	Mounting Force	20120/4.527	N/lb.		
T _L	1.6mm (0.062 in.) from Case for 10s	300	°C		
T _{SOLD}	Plastic Body for 10s	260	°C		
V _{ISOL}	50/60Hz, RMS, 1 minute	2500	V~		
	$I_{ISOL} \le 1 \text{mA}$ $t = 1 \text{s}$	3000	V~		
Weight		6	g		

Symbol Test Conditions Characteristics Charact			cteristic Values		
$(T_J = 25^{\circ}C$, Unless Otherwise Specified)	Min.	Тур.	Max.	
BV _{CES}	$I_{\rm C} = 1$ mA, $V_{\rm GE} = 0$ V	1600			V
V _{GE(th)}	$I_{_{\mathrm{C}}}$ = 250 μ A, $V_{_{\mathrm{CE}}}$ = $V_{_{\mathrm{GE}}}$	3.0		5.0	V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}, V_{GE} = 0V$			85	μΑ
	Note 1, $T_J = 125^{\circ}C$			6	mΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
$\mathbf{V}_{CE(sat)}$	$I_{c} = 50A, V_{GF} = 15V, Note 2$		1.95	2.30	V
	T _J = 125°C		2.30		

G = Gate C = Collector $E \longrightarrow Emitter$

Features

- International Standard Package
- Molding Epoxies Meet UL 94 V-0 Flammability Classification

Advantages

- Space Savings
- High Power Density

Applications

- Capacitor Discharge & Pulser Circuits
- AC Motor Speed Drives
- DC Servo and Robot Drives
- DC Choppers
- Uninterruptible Power Supplies (UPS)
- Switch-Mode and Resonant-Mode Power Supplies

Symbol (T _J = 25°C U	Test Conditions Unless Otherwise Specified)	Chara Min.	acteristic Typ.	Values Max.
g_{fs}	$I_{\rm C}=50A, V_{\rm CE}=10V, \text{Note 2}$	18	30	S
C _{ies}			3020	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		257	pF
C _{res}			50	pF
$\overline{Q_q}$			137	nC
Q _{ge}	$I_{\rm C} = 50$ A, $V_{\rm GE} = 15$ V, $V_{\rm CE} = 0.5 \bullet V_{\rm CES}$		24	nC
Q_{gc}			57	nC
t _{d(on)}	Desiration Ossitables Times T. 0500		53	ns
t _r	Resistive Switching Times, T _J = 25°C		111	ns
t _{d(off)}	$I_c = 50A, V_{GE} = 15V$		235	ns
t _f	$R_{\rm G} = 5\Omega, V_{\rm CE} = 0.8 \bullet V_{\rm CES}$		4400	ns
t _{d(on)}	Posistive Switching Times T = 125°C		52	ns
t,	Resistive Switching Times, T _J = 125°C		140	ns
t _{d(off)}	$I_C = 50A$, $V_{GE} = 15V$ $R_G = 5\Omega$, $V_{CE} = 0.8 \cdot V_{CES}$		240	ns
t,	11 _G = 352, V _{CE} = 0.0 3 V _{CES}		4600	ns
R _{thJC}				0.52 °C/W
R _{thCS}			0.15	°C/W

Reverse Diode (FRED)

Symbol $(T_J = 25^{\circ}C)$	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic Typ.	Values Max.	
V _F	$I_F = 20A, V_{GE} = 0V, \text{ Note } 2$			2.85 2.90	V
V _T	For conduction power losses only			2.10	V
r _{FO}	T _J = 150°C			40	$m\Omega$
I _{RM}	$I_F = 20A, V_{GE} = 0V, V_{R} = 1200V$		23		Α
	T = 125°C		27		Α
t _{rr}	-di_/dt = 450A/us		230		ns
,	$T_J = 125$ °C		400		ns
R _{thJC}				0.80°	C/W

- Notes: 1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.
 - Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

ISOPLUS247™ (IXGR) Outline

MYZ	INCHES		MILLIN	MILLIMETERS		
2114	MIN	MAX	MIN	MAX		
A	.190	.205	4.83	5.21		
A1	.090	.100	2.29	2.54		
A2	.075	.085	1.91	2.16		
Ь	.045	.055	1.14	1.40		
b1	.075	.084	1.91	2.13		
b2	.115	.123	2.92	3.12		
C	.024	.031	0.61	0.80		
	.819	.840	20.80	21.34		
E	.620	.635	15.75	16.13		
е	.215 BSC 5.45 BSC		BSC			
L	.780	.800	19.81	20.32		
L1	.150	.170	3.81	4.32		
Q	.220	.244	5.59	6.20		
R	.170	.190	4.32	4.83		
S	.520	.540	13.21	13.72		
T	.620	.640	15.75	16.26		
U	.065	.080	1.65	2.03		

2 - DRAIN (COLLECTOR)
3 - SOURCE (EMITTER)
4 - NO CONNECTION

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.