

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

April 2016

FAN7190_F085 High-Current, High & Low-Side, Gate-Drive IC

Features

- Floating Channels for Bootstrap Operation to +600V
- Typically 4.5A/4.5A Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- Built-in Under-Voltage Lockout for Both Channels
- Matched Propagation Delay for Both Channels
- 3.3V and 5V Input Logic Compatible
- Output In-phase with Input

Applications

- Diesel and gasoline Injectors/Valves
- MOSFET-and IGBT high side driver applications

Description

The FAN7190_F085 is a monolithic high- and low-side gate-drive IC, which can drive high speed MOSFETs and IGBTs that operate up to +600V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction.

Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level shift circuit offers high-side gate driver operation up to V_S =-9.8V (typical) for V_{BS} =15V.

The UVLO circuit prevents malfunction when V_{DD} and V_{RS} are lower than the specified threshold voltage.

The high current and low output voltage drop feature make this device suitable for magnetic- and piezo type injectors and general MOSFET/IGBT based high side driver applications.

8-Lead, SOIC, Narrow Body

Ordering Information

Part Number	Package	Operating Temperature Range	© Eco Status	Packing Method
FAN7190M_F085	8-SOP	-40°C ~ 125°C	RoHS	Tube
FAN7190MX_F085		-40 C ~ 125 C	10113	Tape & Reel

Notes:

- 1. These devices passed wave soldering test by JESD22A-111.
- 2. A suffix as "...F085P" has been temporarily introduced in order to manage a double source strategy as Fairchild has officially announced in Aug 2014.

Typical Application Circuit

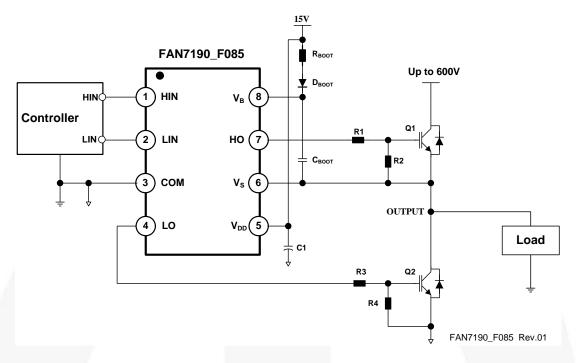


Figure 1. Application Circuit for Half-Bridge

Internal Block Diagram

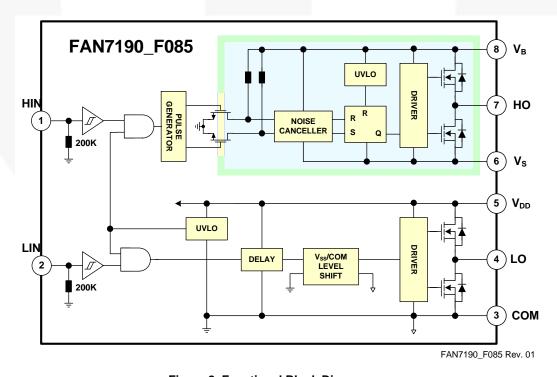
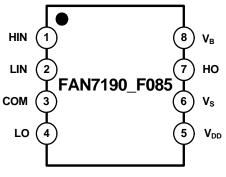



Figure 2. Functional Block Diagram

Pin Configurations

FAN7190M_F085 FAN7190MX_F085

FAN7190_F085 Rev.01

Figure 3. Pin Assignments (Top View)

Pin Definitions

8-Pin	Name	Description
1	HIN	Logic Input for High-Side Gate Driver Output
2	LIN	Logic Input for Low-Side Gate Driver Output
3	COM	Low-Side Driver Return
4	LO	Low-Side Driver Output
5	V _{DD}	Low-Side and Logic Part Supply Voltage
6	V _S	High-Voltage Floating Supply Return
7	НО	High-Side Driver Output
8	V _B	High-Side Floating Supply

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $-40^{\circ}\text{C} < =T_A < = 125^{\circ}\text{C}$, unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Floating Supply Offset Voltage	V _B -25	V _B +0.3	V
V _B	High-Side Floating Supply Voltage	-0.3	625.0	V
V_{HO}	High-Side Floating Output Voltage HO	V _S -0.3	V _B +0.3	V
V_{DD}	Low-Side and Logic Fixed Supply Voltage	-0.3	25.0	V
V_{LO}	Low-Side Output Voltage LO	-0.3	V _{DD} +0.3	V
V _{IN}	Logic Input Voltage (HIN and LIN)	-0.3	V _{DD} +0.3	V
dV _S /dt	Allowable Offset Voltage Slew Rate		50	V/ns
P _D ⁽³⁾⁽⁴⁾⁽⁵⁾	Power Dissipation	8-SOP	0.625	W
θ_{JA}	Thermal Resistance, Junction-to-Ambient	8-SOP	200	°C/W
TJ	Junction Temperature		+150	°C
T _{STG}	Storage Temperature		+150	°C

Notes:

- 3. Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
- 4. Refer to the following standards:
 - JESD51-2: Integral circuits thermal test method environmental conditions natural convection JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages
- 5. Do not exceed P_D under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V _B	High-Side Floating Supply Voltage	V _S +10	V _S +22	V
V_S	High-Side Floating Supply Offset Voltage	6-V _{DD}	600	V
V_{HO}	High-Side Output Voltage	Vs	V _B	V
V_{DD}	Low-Side and Logic Supply Voltage	10	22	V
V_{LO}	Low-Side Output Voltage	COM	V_{DD}	V
V_{IN}	Logic Input Voltage (HIN and LIN)	COM	V_{DD}	V
T _A	Operating Ambient Temperature	-40	+125	°C
T _{pulse}	Minimum Pulse Width ⁽⁶⁾	80	-	ns

Note:

6. Guaranteed by design. Refer to Figure 28, 29 and 30 on page 11

Electrical Characteristics

 V_{BIAS} (V_{DD} , V_{BS})=15.0V, V_{S} =COM, -40°C <= T_{A} <= 125°C, unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to COM and are applicable to the respective input signals HIN and LIN. The V_{O} and I_{O} parameters are referenced to COM and V_{S} is applicable to the respective output signals HO and LO.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
POWER S	SUPPLY SECTION (V _{DD} AND V _{BS})		I	II.		
$V_{DDUV+} \ V_{BSUV+}$	V _{DD} and V _{BS} Supply Under-Voltage Positive-going Threshold		7.8	8.8	9.8	
V _{DDUV} - V _{BSUV} -	V _{DD} and V _{BS} Supply Under-Voltage Negative-going Threshold		7.2	8.3	9.1	V
$V_{\rm DDUVH} \ V_{\rm BSUVH}$	V _{DD} and V _{BS} Supply Under-Voltage Lockout Hysteresis Voltage			0.5		
I_{LK}	Offset Supply Leakage Current	V _B =V _S =600V			50	
I_{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V		45	110	μΑ
I_{QDD}	Quiescent V _{DD} Supply Current	V _{IN} =0V or 5V		75	150	
I _{PBS}	Operating V _{BS} Supply Current	f _{IN} =20kHz, rms value		530	700	μA
I _{PDD}	Operating V _{DD} Supply Current	f _{IN} =20kHz, rms value		530	750	μ
LOGIC IN	PUT SECTION (HIN, LIN)					
V _{IH}	Logic "1" Input Voltage		2.5			V
V_{IL}	Logic "0" Input Voltage				1.2	V
I _{IN+}	Logic "1" Input Bias Current	V _{IN} =5V		25	50	μA
I _{IN-}	Logic "0" Input Bias Current	V _{IN} =0V		1.0	2.0	μΛ
R_{IN}	Input Pull-down Resistance		100	200		KΩ
GATE DR	IVER OUTPUT SECTION (HO, LO)				_	
V _{OH}	High-level Output Voltage, V _{BIAS} -V _O	No Load			1.5	V
V _{OL}	Low-level Output Voltage, V _O	No Load			35	mV
I _{O+}	Output High, Short-circuit Pulsed Current ⁽⁶⁾	V _O =0V, V _{IN} =5V with PW<10μs	3.5	4.5		Α
I _{O-}	Output Low, Short-circuit Pulsed Current ⁽⁶⁾	V _O =15V, V _{IN} =0V with PW<10µs	3.5	4.5		A
V _S	Allowable Negative V _S Pin Voltage for HIN Signal Propagation to HO		/	-9.8	-7.0	V

Note:

6. This parameter guaranteed by design.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{DD} , V_{BS})=15.0V, V_{S} =COM=0V, C_{L} =1000pF and -40°C <= T_{A} <= 125°C unless otherwise specified.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay	V _S =0V		140	200	N
t _{off}	Turn-off Propagation Delay	V _S =0V		140	200	
MT	Delay Matching, HS & LS Turn-on/off			0	50	ns
t _r	Turn-on Rise Time			25	50	
t _f	Turn-off Fall Time			20	45	

Typical Characteristics

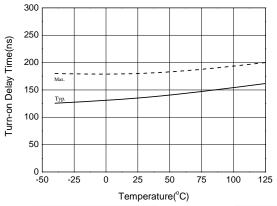


Figure 4. Turn-on Propagation Delay vs. Temperature

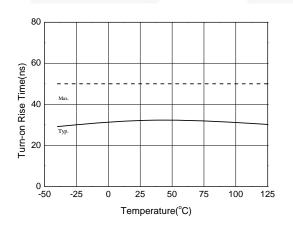


Figure 6. Turn-on Rise Time vs. Temperature

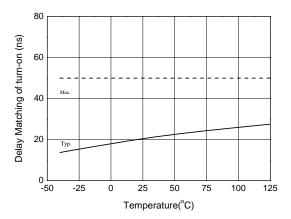


Figure 8. Turn-on Delay Matching vs. Temperature

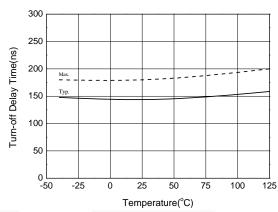


Figure 5. Turn-off Propagation Delay vs. Temperature

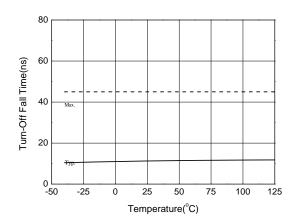


Figure 7. Turn-off Fall Time vs. Temperature

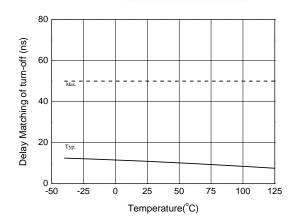


Figure 9. Turn-off Delay Matching vs. Temperature

Typical Characteristics (Continued)

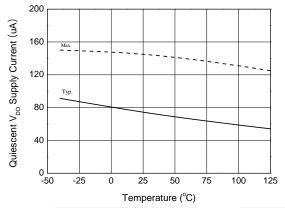


Figure 10. Quiescent V_{DD} Supply Current vs. Temperature

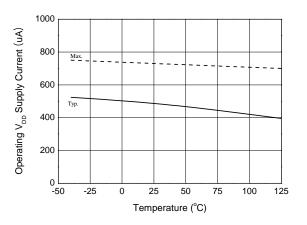


Figure 12. Operating V_{DD} Supply Current vs. Temperature

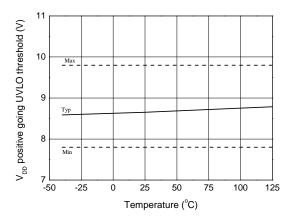


Figure 14. V_{DD} UVLO+ vs. Temperature

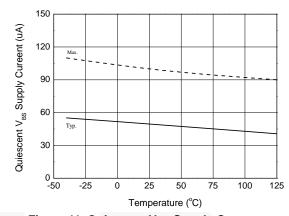


Figure 11. Quiescent V_{BS} Supply Current vs. Temperature

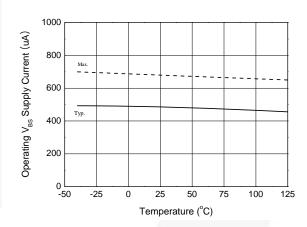


Figure 13. Operating V_{BS} Supply Current vs. Temperature.

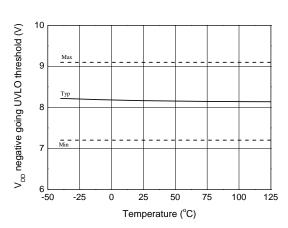


Figure 15. V_{DD} UVLO- vs. Temperature

Typical Characteristics (Continued)

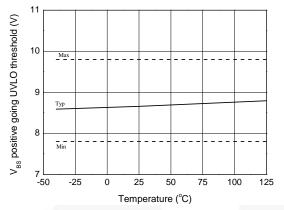


Figure 16. V_{BS} UVLO+ vs. Temperature



Figure 17. V_{BS} UVLO- vs. Temperature

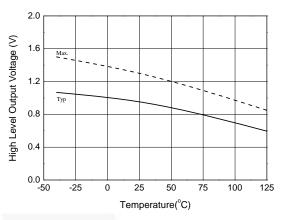


Figure 18. High-Level Output Voltage vs. Temperature

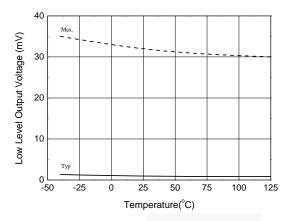


Figure 19. Low-Level Output Voltage vs. Temperature

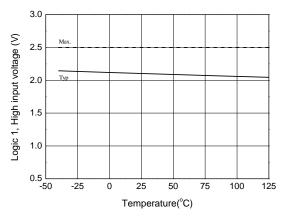


Figure 20. Logic High Input Voltage vs. Temperature

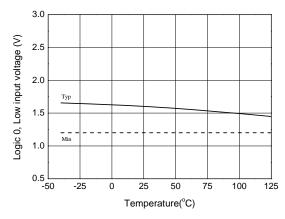


Figure 21. Low Input Voltage vs. Temperature

Typical Characteristics (Continued)

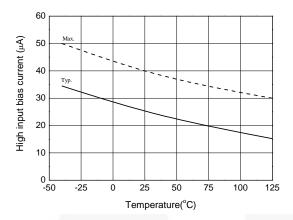


Figure 22. Logic Input High Bias Current vs. Temperature

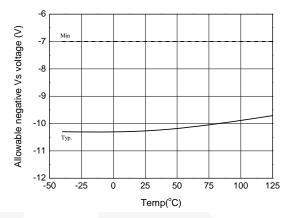


Figure 23. Allowable Negative V_S Voltage vs. Temperature

Switching Time Definitions

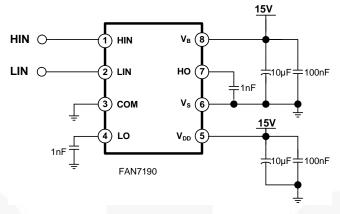


Figure 24. Switching Time Test Circuit (Referenced 8-SOP)

Figure 25. Input/Output Timing Diagram

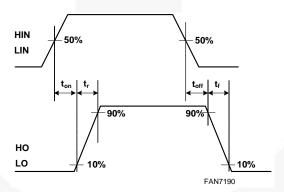


Figure 26. Switching Time Waveform Definitions

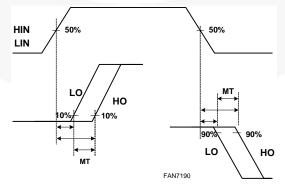


Figure 27. Delay Matching Waveform Definitions

Switching Time Definitions

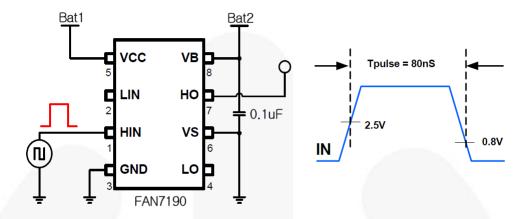


Figure 28. Short Pulse Width Test Circuit and Pulse Width Waveform

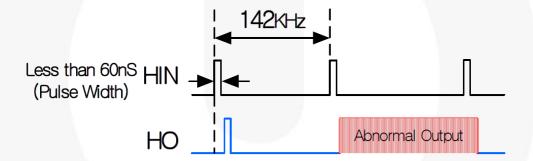


Figure 29. Abnormal Output Waveform with short pulse width

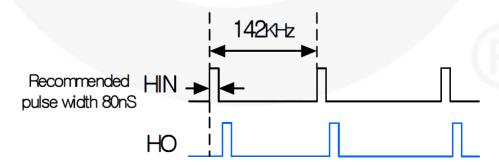
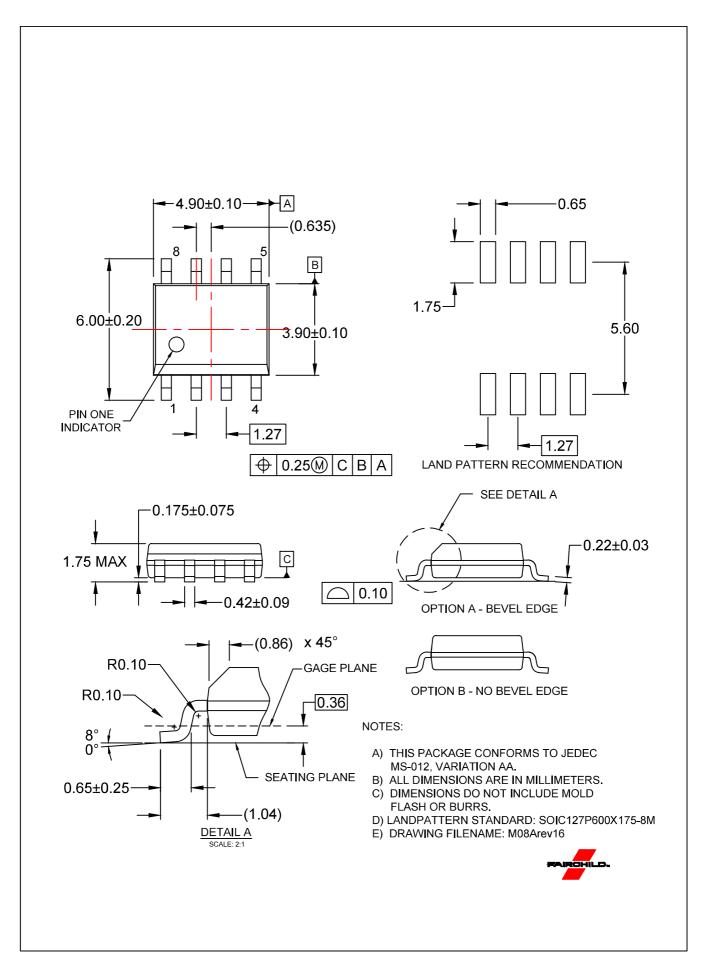



Figure 30. Recommendation of pulse width Output Waveform

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative