

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAN5909

Multi-Mode Buck Converter with LDO Assist for GSM / EDGE, 3 G/3.5 G and 4 G PAs

Features

- Solution Size $<9.52 \mathrm{~mm}^{2}$
- 2.7 V to 5.5 V Input Voltage Range
- $V_{\text {out }}$ Range from 0.40 V to 3.60 V (or V_{IN})
- Single, Small Form-Factor Inductor
- $29 \mathrm{~m} \Omega$ Integrated LDO
- 100\% Duty Cycle for Low-Dropout Operation
- Input Under-Voltage Lockout / Thermal Shutdown
- $1.61 \mathrm{~mm} \times 1.61 \mathrm{~mm}, 16$-Bump, 0.4 mm Pitch WLCSP
- $\quad 2.9 \mathrm{MHz}$ PWM Mode
- $6 \mu \mathrm{~s}$ Output Voltage Step Response for early Tx Power-Loop Settling with 14μ F Load Capacitance
- Sleep Mode for $\sim 50 \mu \mathrm{~A}$ Standby Current Consumption
- Forced PWM Mode
- Up to 95\% Efficient Synchronous Operation in High Power Conditions
- 2.9 MHz PWM-Only Mode
- Auto PFM/PWM Mode
- 2.9 MHz PWM Operation at High Power and PFM Operation at Low Power and Low Output Voltage for Maximum Low Current Efficiency

Applications

- Dynamic Supply Bias for Polar or Linear GSM / EDGE PAs and $3 \mathrm{G} / 3.5 \mathrm{G}$ and 4 G PAs
- Dynamic Supply Bias for GSM / EDGE Quad Band Amplifiers for Mobile Handsets and Data Cards

Description

The FAN5909 is a high-efficiency, low-noise, synchronous, step-down, DC-DC converter optimized for powering Radio Frequency (RF) Power Amplifiers (PAs) in handsets and other mobile applications. Load currents up to 2.5 A are allowed, which enables GSM / EDGE, $3 \mathrm{G} / 3.5 \mathrm{G}$, and 4G platforms under very poor VSWR conditions.
The output voltage may be dynamically adjusted from 0.40 V to 3.60 V , proportional to an analog input voltage $\mathrm{V}_{\text {con }}$ ranging from 0.16 V to 1.44 V , optimizing poweradded efficiency. Fast transition times of less than $6 \mu \mathrm{~s}$ are achieved, allowing excellent inter-slot settling.

An integrated LDO is automatically enabled under heavy load conditions or when the battery voltage and voltage drop across the DC-DC PMOS device are within a set range of the desired output voltage. This LDOassist feature supports heavy load currents under the most stringent battery and $V_{\text {SWR }}$ conditions while maintaining high efficiency, low dropout, and superior spectral performance.

The FAN5909 DC-DC operates in PWM Mode with a 2.9 MHz switching frequency and supports a single, small form-factor inductor ranging from $1.0 \mu \mathrm{H}$ to $2.2 \mu \mathrm{H}$. In addition, PFM operation is allowed at low load currents for output voltages below 1.5 V to maximize efficiency. PFM operation can be disabled by setting MODE pin to LOW.

When output regulation is not required, the FAN5909 may be placed in Sleep Mode by setting $\mathrm{V}_{\text {con }}$ below 100 mV nominally. This ensures a very low $\mathrm{I}_{\mathrm{Q}}(<50 \mu \mathrm{~A})$ while enabling a fast return to output regulation.
FAN5909 is available in a low profile, small form factor, 16 bump, Wafer-Level Chip-Scale Package (WLCSP) that is $1.61 \mathrm{~mm} \times 1.61 \mathrm{~mm}$. Only three external components are required: two 0402 capacitors and one 2016 inductor.

Ordering Information

Part Number	Output Voltage	Temperature Range	Package	Packing
FAN5909UCX	0.4 V to PVIN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$1.61 \mathrm{~mm} \times 1.61 \mathrm{~mm}, 16-$ Bump 0.4 mm Pitch,, Wafer-Level Chip-Scale Package (WLCSP)	Tape and Reel

Block Diagrams

Figure 1. Typical Application

Notes:

1. The three $4.7 \mu \mathrm{~F}$ capacitors include the FAN5909 output capacitor and PA bypass capacitors.
2. Regulator requires only one $4.7 \mu \mathrm{~F}$; the $\mathrm{V}_{\text {Out }}$ bus should not exceed $14 \mu \mathrm{~F}$ capacitance over DC bias and temperature.

Figure 2. Simplified Block Diagram

Pin Configuration

PGND	SW	PVIN	VOUT
A1	A2	A 3	A 4
B1	$\mathrm{B2}$	$\mathrm{B3}$	B 4
AGND	EN	BPEN	PGND
C 1	C 2	C 3	C 4
AVIN	VCON	MODE	FB
$\mathrm{D1}$	D 2	D 3	D 4

Figure 3. Bumps Face Down - Top-Through View

VOUT	PVIN	SW	PGND
A4	A3	A2	A1
B4	B3	B2	B1
PGND	BPEN	EN	AGND
C4	C3	C2	C1
FB	MODE	VCON	AVIN
D4	D3	D2	D1

Figure 4. Bumps Face Up

Pin Definitions

Pin \#	Name	Description		
C1	AGND	Analog ground, reference ground for the IC. Follow PCB routing notes for connecting this pin.		
A4, B4	VOUT	Output voltage sense pin. Connect to Vout to establish feedback path for regulation point. Connect together on PCB.		
D4	FB	Feedback pin. Connect to positive (+) pad of Cout on Vout.		
C2	EN	Enables switching when HIGH; Shutdown Mode when LOW. This pin should not be left floating.		
D2	VCON	Analog control pin. Shield signal routing against noise.		
D1	AVIN	Analog supply voltage input. Connect to PVIN.		
C3	BPEN	Force Bypass Mode when HIGH; Auto Bypass Mode when LOW. This pin should not be left floating.		
D3	MODE	When MODE is HIGH, the DC-DC permits PFM operation under low load currents and PWM operation under heavy load currents. When MODE pin is set LOW, the DC-DC operates in forced PWM operation. This pin should not be left floating.		
A3, B3	PVIN	Supply voltage input to the internal MOSFET switches. Connect to input power source. A2, B2 SWSwitching node of the internal MOSFET switches. Connect to output inductor. A1, B1,C4 PGND		Power ground of the internal MOSFET switches. Follow routing notes for connections between
:---				
PGND and AGND.				

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Voltage on AVIN, PVIN		-0.3	6.0	V
	Voltage on Any Other Pin		-0.3	$\mathrm{AV}_{\text {IN }}+0.3$	
TJ	Junction Temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Soldering Temperature (10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Protection Level	Human Body Model, JESD22-A114	2.0		kV
		Charged Device Model, JESD22-C101	1.0		
LU	Latch Up		JESD 78D		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range	2.7		5.5	V
V out	Output Voltage Range	0.35		$<\mathrm{V}_{\text {IN }}$	V
lout_BYpass	Output Current in Bypass Mode (100\% Duty Cycle)			4.5	A
lout	Output Current			3.0	A
L	Inductor		1		$\mu \mathrm{H}$
$\mathrm{C}_{\text {IN }}$	Input Capacitor ${ }^{(3)}$		10		$\mu \mathrm{~F}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitor ${ }^{(4)}$		4.7		$\mu \mathrm{~F}$
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature Range	-40		+125	${ }^{\circ} \mathrm{C}$

Notes

3. The input capacitor must be large enough to limit the input voltage drop during GSM bursts, bypass transitions, and large output voltage transitions.
4. Regulator requires only one $4.7 \mu \mathrm{~F}$; the $\mathrm{V}_{\text {out }}$ bus should not exceed $14 \mu \mathrm{~F}$ capacitance over DC bias and temperature.

Dissipation Ratings

Symbol	Parameter	Min.	Typ.	Max.	Unit
Θ_{JA}	Junction-to-Ambient Thermal Resistance ${ }^{(5)}$		40		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

5. Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer $2 s 2 p$ boards with vias in accordance to JESD51- JEDEC standard. Special attention must be paid not to exceed junction temperature $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ at a given ambient temperature T_{A}.

Electrical Characteristics, All Modes

Recommended operating conditions, unless otherwise noted, circuit per Figure $1, \mathrm{~V}_{\mathbb{I}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are given $\mathrm{V}_{\mathbb{I}}=3.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{L}=1 \mu \mathrm{H}$, Toko DFE201610C, $\mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F} 0402$ TDK C1005X5R0J106MT, Cout $=3 \times 4.7 \mu \mathrm{~F} 0402$ TDK C1005X5R0J475KT.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Power Supplies						
$\mathrm{V}_{\text {IN }}$	Input Voltage Range	$\mathrm{l}_{\text {Out }} \leq 2.5 \mathrm{~A}$	2.7		5.5	V
ISD	Shutdown Supply Current	$\mathrm{EN}=0 \mathrm{~V}, \mathrm{MODE}=0$		0.5	3.0	$\mu \mathrm{A}$
Vuvio	Under Voltage Lockout Threshold	$\mathrm{V}_{\text {IN }}$ Rising	2.20	2.45	2.60	V
		Hysteresis		250		mV
Logic Control						
V_{IH}	Logic Threshold Voltage; EN, BPEN, MODE	Input HIGH Threshold	1.2			V
$\mathrm{V}_{\text {IL }}$		Input LOW Threshold			0.4	V
ICTRL	Logic Control Input Bias Current; EN, BPEN, MODE	VIN or GND		0.01	1.00	$\mu \mathrm{A}$
Analog Control						
Vcon_ldo_en1	V con Forced Bypass Enter ${ }^{(6)}$	$V_{\text {con }}$ Voltage that Forces Bypass; $\mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V}-4.75 \mathrm{~V}$	1.6			V
VCON_LDO_EN2	V ${ }_{\text {con }}$ Forced Bypass Enter ${ }^{(6)}$	$\mathrm{V}_{\text {con }}$ Voltage that Forces Bypass; $\mathrm{V}_{\text {IN }} \approx \mathrm{V}_{\text {OUT }}$		$\mathrm{V}_{\text {IN }} / 2.5$		V
Vcon_LDo_Ex	Vcon Forced Bypass Exit	$\mathrm{V}_{\text {con }}$ Voltage that Exits Forced Bypass; $\mathrm{V}_{\text {IN }}=2.70 \mathrm{~V}-4.75 \mathrm{~V}$			1.4	V
$V_{\text {con_SL_en }}$	$\mathrm{V}_{\text {con }}$ Sleep Enter	$\mathrm{V}_{\text {con }}$ Voltage Forcing Low I_{Q} Sleep Mode	70			mV
V ${ }_{\text {con_SL_ex }}$	$\mathrm{V}_{\text {con }}$ Sleep Exit	V con Voltage that Exits SLEEP Mode			125	mV
I_{Q}	DC-DC Quiescent Current in Sleep Mode	$\mathrm{V}_{\text {CoN }}<70 \mathrm{mV}$		50	80	$\mu \mathrm{A}$
Gain	Gain in Control Range 0.16 V to 1.44 V			2.5		
Vout_Acc	Vout Accuracy	Ideal $=2.5 \times \mathrm{V}_{\text {con }}$	-50		+50	mV
LDO						
$\mathrm{R}_{\text {FET }}$	LDO FET Resistance			29		$\mathrm{m} \Omega$
$\Delta \mathrm{V}_{\text {OUt_LDo }}$	LDO Dropout ${ }^{(7)}$	$\mathrm{I}_{\text {OUt }}=2.0 \mathrm{~A}$		100		mV

Over Temperature Protection

$\mathrm{T}_{\text {OTP }}$	Over-Temperature Protection	Rising Temperature		+150		${ }^{\circ} \mathrm{C}$
	Hysteresis		+20		${ }^{\circ} \mathrm{C}$	

Oscillator

f_{SW}	Average Oscillator Frequency		2.6	2.9	3.2	MHz
DC-DC						

DC-DC

$R_{\text {DSON }}$	PMOS On Resistance	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GS}}=3.7 \mathrm{~V}$		80		$\mathrm{~m} \Omega$
	NMOS On Resistance	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GS}}=3.7 \mathrm{~V}$		60		
$\mathrm{I}_{\text {LIMp }}$	P-Channel Current Limit ${ }^{(8)}$		1.50	1.90	2.30	A
$\mathrm{I}_{\text {LIMn }}$	N-Channel Current Limit ${ }^{(8)}$		1.50	1.90	2.30	A
$\mathrm{I}_{\text {Discharge }}$	Maximum Transient Discharge Current			3.7	4.5	A
$\mathrm{I}_{\text {LIMLDO }}$	LDO Current Limit				4.5	A
VOUT_MIN	Minimum Output Voltage	$\mathrm{V}_{\text {CON }}=0.16 \mathrm{~V}$	0.35	0.40	0.45	V
$\mathrm{~V}_{\text {OUT_MAX }}$	Maximum Output Voltage	$\mathrm{V}_{\text {CON }}=1.44 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.9 \mathrm{~V}$	3.55	3.60	3.65	V

Electrical Characteristics, All Modes

Recommended operating conditions, unless otherwise noted, circuit per Figure $1, \mathrm{~V}_{\mathbb{I}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are given $\mathrm{V}_{\mathbb{I}}=3.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{L}=1 \mu \mathrm{H}$, Toko DFE201610C, $\mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F} 0402$ TDK C1005X5R0J106MT, Cout $=3 \times 4.7 \mu \mathrm{~F} 0402$ TDK C1005X5R0J475KT.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
DC-DC Efficiency						
$\eta_{\text {Power }}$	Power Efficiency, Low-Power Auto Mode, $\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=3.1 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=250 \mathrm{~mA}$		95		\%
		$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$, I LOAD $=250 \mathrm{~mA}$		90		
		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$		65		
Output Regulation						
Vout_RLine	Vout Line Regulation	$3.1 \leq \mathrm{V}_{\text {IN }} \leq 3.7$		± 5		mV
Vout_RLoad	Vout Load Regulation	$20 \mathrm{~mA} \leq$ lout $\leq 800 \mathrm{~mA}$		± 25		mV
Vout_Ripple	Vout Ripple	PFM Mode, $\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}$, lout < 100 mA		11		mV
		PWM Mode, $\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$		4		
Timing						
tss	Startup Time ${ }^{(9)}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {out }} \text { from } 0 \mathrm{~V} \text { to } 3.1 \mathrm{~V} \text {, } \\ & \mathrm{C}_{\text {out }}=3 \times 4.7 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 5 \mathrm{R} \end{aligned}$		50	60	$\mu \mathrm{s}$
$t_{\text {DC-DC_TR }}$	V ${ }_{\text {con }}$ Step Response Rise Time ${ }^{(9)}$	$\begin{aligned} & \text { From } \mathrm{V}_{\text {CON }} \text { to } 95 \% \mathrm{~V}_{\text {OUT, }} \Delta \mathrm{V}_{\text {OUT }} \leq \\ & 2.7 \mathrm{~V}(0.7 \mathrm{~V}-3.4 \mathrm{~V}), \mathrm{R}_{\text {LOAD }}=5 \Omega, \\ & \text { Cout }=14 \mu \mathrm{~F} \end{aligned}$		6.0	7.3	$\mu \mathrm{s}$
$t_{\text {DC-DC_TF }}$	$\mathrm{V}_{\text {con }}$ Step Response Fall Time ${ }^{(9)}$	$\begin{aligned} & \text { From } V_{\text {CON }} \text { to } 5 \% \text { VOUT, }^{\text {V }} \text { VOUT } 2.7 \mathrm{~V} \\ & (3.4 \mathrm{~V}-0.7 \mathrm{~V}), R_{\text {LOAD }}=200 \Omega \text {, } \\ & \text { Cout }=14 \mu \mathrm{~F} \end{aligned}$		6.8	7.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {DC-DC_CL }}$	Maximum Allowed Time for Consecutive Current Limit ${ }^{(10)}$	$\mathrm{V}_{\text {OUT }}<1 \mathrm{~V}$		1500		$\mu \mathrm{s}$
tDCDC_CLR	Consecutive Current Limit Recovery Time ${ }^{(10)}$			4800		$\mu \mathrm{s}$

Notes:
6. Input voltages nominally exceeding the lesser of $\mathrm{V}_{\text {IN }} / 2.5$ or 1.6 V force 100% duty cycle.
7. Dropout depends on LDO and DC-DC PFET R Rson and inductor DCR.
8. The current limit is the peak (maximum) current.
9. Guaranteed by design. Maximum values are based on simulation results with 50% Cout derating; not tested in production. Voltage transient only. Assumes $\mathrm{C}_{\text {out }}=3 \times 4.7 \mu \mathrm{~F}$ ($1 \times 4.7 \mu \mathrm{~F}$ for regulator and $2 \times 4.7 \mu \mathrm{~F}$ for PA decoupling capacitors).
10. Protects part under short-circuit conditions.

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=\mathrm{EN}=3.7 \mathrm{~V}, \mathrm{~L}=1.0 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=3 \times 4.7 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Figure 5. Efficiency vs. Load Current and Output Voltage, Figure 6. Efficiency vs. Load Current and Output Voltage, $V_{\text {IN }}=3.8 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$ to 150 mA
$\mathrm{V}_{\text {IN }}=3.8 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=150 \mathrm{~mA}$ to $\mathbf{7 5 0} \mathrm{mA}$

Figure 7. Efficiency vs. Load Current and Output Voltage, Figure 8. Efficiency vs. Load Current and Output Voltage,
$V_{\text {IN }}=3.8 \mathrm{~V}$, lout $=100 \mathrm{~mA}$ to 1 A

Figure 9. Output Voltage vs. Supply Voltage, $\mathrm{V}_{\text {out }}=3.4 \mathrm{~V}$, IouT=1.5 A, $\mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}$ to Dropout
$\mathrm{V}_{\mathrm{IN}}=3.8 \mathrm{~V}$, lout=1 A to 2.5 A

Figure 10. Output Voltage vs. $\mathrm{V}_{\text {con }}$ Voltage, $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$, $R_{\text {LOAD }}=6.8 \Omega, 0.1 \mathrm{~V}<\mathrm{V}_{\text {CON }}<1.6 \mathrm{~V}$

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=\mathrm{EN}=3.7 \mathrm{~V}, \mathrm{~L}=1.0 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, $\mathrm{C}_{\text {out }}=3 \times 4.7 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Figure 11. Center-Switching Frequency vs. Supply Voltage, $V_{\text {OUt }}=2.5 \mathrm{~V}$, lout $=\mathbf{7 0 0} \mathrm{mA}$

Figure 13. Quiescent Current (PWM) vs. Supply Voltage, $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, 2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$ (No Load)

Figure 15. $\mathrm{V}_{\text {con }}$ Transient (PFM to PWM), $\mathrm{V}_{\text {оut }}=1.4 \mathrm{~V}$ to 3.4 V, $\mathrm{R}_{\mathrm{LOAD}}=6.8 \Omega, \mathrm{~V}_{\mathrm{IN}}=3.8 \mathrm{~V}, 100 \mathrm{~ns}$ Edge

Figure 12. Quiescent Current (PFM) vs. Supply Voltage, $\mathrm{V}_{\text {out }}=1 \mathrm{~V}, 2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$ (No Load)

Figure 14. $\mathrm{V}_{\text {CON }}$ Transient ($3 \mathrm{G} / 4 \mathrm{G}$), $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to 3 V , $R_{\text {LOAD }}=6.8 \Omega, \mathrm{~V}_{\text {IN }}=3.8 \mathrm{~V}, 100 \mathrm{~ns}$ Edge

Figure 16. $\mathrm{V}_{\text {con }}$ Transient (PWM), $\mathrm{V}_{\text {out }}=1.4 \mathrm{~V}$ to 3.4 V , $R_{\text {LOAD }}=1.9 \Omega, \mathrm{~V}_{\mathrm{IN}}=4.2 \mathrm{~V}, 100 \mathrm{~ns}$ Edge

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=\mathrm{EN}=3.7 \mathrm{~V}, \mathrm{~L}=1.0 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=3 \times 4.7 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Figure 17. Load Transient in PFM Mode, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=1 \mathrm{~V}$, lout $=0 \mathrm{~mA}$ to $\mathbf{6 0} \mathrm{mA}, 1 \mu \mathrm{~s}$ Edge

Figure 19. Load Transient in PWM Mode, $\mathrm{V}_{\mathrm{IN}}=3.8 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=3.0 \mathrm{~V}$, lout $=0 \mathrm{~mA}$ to $\mathbf{7 0 0} \mathrm{mA}, 10 \mu \mathrm{~s}$ Edge

Figure 18. Load Transient in PWM Mode, $\mathrm{V}_{\mathrm{IN}}=3.8 \mathrm{~V}$, $\mathrm{V}_{\text {Out }}=2.5 \mathrm{~V}$, $\mathrm{I}_{\text {оut }}=0 \mathrm{~mA}$ to $300 \mathrm{~mA}, 10 \mu \mathrm{~s}$ Edge

Figure 20. Load Transient in PWM Mode, $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=3.0 \mathrm{~V}$, lout $=0 \mathrm{~mA}$ to $1.2 \mathrm{~A}, 10 \mu \mathrm{~s}$ Edge

100 $\mu \mathrm{s} / \mathrm{DIV}$

100 $\mu \mathrm{s} / \mathrm{DIV}$

Figure 21. Line Transient, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ to 4.2 V, $\mathrm{V}_{\text {OUt }}=1.0 \mathrm{~V}$, Figure 22. Line Transient, $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ to 4.2 V, $\mathrm{V}_{\text {Out }}=2.5 \mathrm{~V}$, 6.8Ω Load, $10 \mu \mathrm{~s}$ Edge
6.8Ω Load, $10 \mu \mathrm{~s}$ Edge

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=\mathrm{EN}=3.7 \mathrm{~V}, \mathrm{~L}=1.0 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=3 \times 4.7 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Figure 23. Startup in PFM Mode, $\mathrm{V}_{\mathrm{IN}}=3.8 \mathrm{~V}, \mathrm{~V}_{\text {out }}=1.0 \mathrm{~V}$, No Load, EN = LOW to HIGH

Figure 24. Startup in PWM Mode, $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.4 \mathrm{~V}$, No Load, EN = LOW to HIGH

Operating Description

The FAN5909 is a high-efficiency, synchronous, step-down converter (DC-DC) with LDO-assist function.
The DC-DC converter operates with current-mode control and supports a wide range of load currents. High-current applications up to a 2.5 A DC output, such as mandated by GSM/EDGE applications, are allowed. Performance degradation due to spurs is removed by spreading the ripple energy through clock dither. A regulated Bypass Mode continues to regulate the output to the desired voltage as $\mathrm{V}_{\text {IN }}$ approaches $V_{\text {out. }}$ The LDO offers a dropout voltage of approximately 100 mV under a 2 A load current.
The output voltage $\mathrm{V}_{\text {out }}$ is regulated to 2.5 times the input control voltage, $\mathrm{V}_{\text {con }}$, set by an external DAC. The FAN5909 operates in either PWM or PFM Mode, depending on the output voltage and load current.
In Pulse Width Modulation (PWM) Mode, regulation begins with on-state. A P-channel transistor is turned on and the inductor current is ramped up until the off-state begins. In the off-state, the P-channel is switched off and an N-channel transistor is turned on. The inductor current decreases to maintain an average value equal to the DC load current. The inductor current is continuously monitored. A current sense flags when the P-channel transistor current exceeds the current limit and the switcher is turned back to off-state to decrease the inductor current and prevent magnetic saturation. The current sense flags when the N-channel transistor current exceeds the current limit and redirects discharging current through the inductor back to the battery.
In Pulse Frequency Modulation (PFM) Mode, the FAN5909 operates in a constant on-time mode at low load currents. During on-state, the P-channel is turned on for a specified time before switching to off-state. In off-state, the N -channel switch is enabled until inductor current decreases to 0 A . The switcher enters three-state until a new regulation cycle starts.
PFM operation is allowed only in Low-Power Mode (MODE=1) for output voltages nominally less than 1.5 V . At low load currents, PFM achieves higher efficiency than PWM. The trade-off for efficiency improvement, however, is larger output ripple. Some applications, such as audio, may not tolerate the higher ripple, especially at high output voltages.

Dynamic Output Voltage Transitions

FAN5909 has a complex voltage transition controller that realizes $6 \mu \mathrm{~s}$ transition times with a large output capacitor and output voltage ranges.

The transition controller manages five transitions:

- $\Delta \mathrm{V}_{\text {out }}$ positive step
- $\Delta \mathrm{V}_{\text {out }}$ negative step
- $\Delta \mathrm{V}_{\text {OUt }}$ transition to or from 100% duty cycle
- $\Delta \mathrm{V}_{\text {OUT }}$ transition at startup

In all cases, it is recommended that sharp $\mathrm{V}_{\text {CoN }}$ transitions be applied, letting the transition controller optimize the output voltage slew rate.

$\Delta \mathbf{V}_{\text {out }}$ Positive Step

After a $\mathrm{V}_{\text {con }}$ positive step, the FAN5909 enters Current-Limit Mode, where Vout ramps with a constant slew rate dictated by the output capacitor and the current limit.

$\Delta V_{\text {out }}$ Negative Step

After a $\mathrm{V}_{\text {con }}$ negative step, the FAN5909 enters Current Limit Mode where Vout is reduced with a constant slew rate dictated by the output capacitor and the current limit.

$\mathrm{V}_{\text {out }}$ Transition to or from Forced Bypass

The DC-DC is forced into 100% duty cycle for $V_{\text {CoN }}$ nominally greater than 1.6 V . This allows the output to be connected to the supply through both the low-resistance DCDC and the LDO PFETs.

Vout Transition at Startup

At startup, after the EN rising edge is detected, the system requires 25μ s for all internal voltage references and amplifiers to start before enabling the DC-DC converter function.

MODE Pin

The MODE pin enable Forced PWM Mode or Auto PFM / PWM Mode. When the MODE pin is toggled HIGH (logic 1), the FAN5909 operates in PFM for Vout $\leq 1.5 \mathrm{~V}$ under light-load conditions and PWM for heavy-load conditions. If the MODE pin is set LOW (logic $=0$), it operates in Forced PWM Mode.

Auto PFM / PWM Mode (MODE = 1)
Auto PFM/PWM Mode is appropriate for $3 \mathrm{G} / 3.5 \mathrm{G}$ and 4 G applications.
Forced PWM Mode (MODE = 0)
Forced PWM Mode is appropriate for applications that demand minimal ripple over the entire output voltage range.

DC-DC - LDO-Assist

The LDO-assist function maintains output regulation when $\mathrm{V}_{\text {IN }}$ approaches $\mathrm{V}_{\text {OUt }}$, enables fast transition times under heavy loads, and minimizes PCB space by enabling a smaller inductor to be employed by using the LDO to provide a portion of the necessary load current.
The LDO-assist function limits the maximum current that the DC-DC may supply by shunting current away from the DCDC under heavy loads and high duty cycles. In addition, the LDO-assist enables a seamless transition into 100% duty cycle, ensuring both low output ripple and constant output regulation. Since the LDO-assist function limits the maximum current supplied by the DC-DC, PCB area is minimized by enabling a lower current capable, and thus smaller form factor, inductor to be used.

DC-DC - Sleep Mode

The Sleep Mode minimizing current while enabling rapid return to regulation. Sleep Mode is entered when $\mathrm{V}_{\text {con }}$ is held below 70 mV for at least $40 \mu \mathrm{~s}$. In this mode, current consumption is reduced to under $50 \mu \mathrm{~A}$. Sleep Mode is exited after $\sim 12 \mu \mathrm{~s}$ when $\mathrm{V}_{\text {con }}$ is set above 125 mV .

Application Information

Figure 26 illustrates the FAN5909 in a GSM / EDGE / WCDMA transmitter configuration, driving multiple GSM / EDGE and $3 \mathrm{G} / 3.5 \mathrm{G}$ and 4 G PAs. Figure 27 presents a timing diagram designed to meet GSM specifications.

DC Output Voltage

The output voltage is determined by $\mathrm{V}_{\text {con }}$ provided by an external DAC or voltage reference:
$V_{\text {OUT }}=2.5 \times V_{\text {CON }}$

Figure 25. Output Voltage vs. Control Voltage

Figure 26. Typical Application Diagram with GSM/EDGE/WCDMA Transmitters

The FAN5909 provides regulated $\mathrm{V}_{\text {Out }}$ only if $\mathrm{V}_{\text {CON }}$ falls within the typical range from 0.16 V to 1.44 V . This allows $\mathrm{V}_{\text {out }}$ to be adjusted between 0.4 V and 3.6 V . If $\mathrm{V}_{\text {con }}$ is less than 0.16 V , Vout is clamped to 0.40 V . In Auto PFM/PWM Mode, the FAN5909 automatically switches between PFM and PWM. In Forced PWM Mode (MODE = 0), the FAN5909 automatically switches into PWM Mode.

The FAN5909 is designed to support voltage transients of $6 \mu \mathrm{~s}$ when configured for GSM/EDGE applications (MODE=0) and driving a load capacitance of approximately $14 \mu \mathrm{~F}$. Figure 1 shows a timing diagram for WCDMA applications.

Figure 27. Timing Diagram for GSM/EDGE Transmitters

Figure 28. Timing Diagram for WCDMA Transmitters

Inductor Selection

The FAN5909 operates at 2.9 MHz switching frequency, allowing $1.0 \mu \mathrm{H}$ or $1.5 \mu \mathrm{H}$ inductors to be used in designs. For applications requiring the smallest possible PCB area, use a $1.0 \mu \mathrm{H} 2012$ inductor or a $1.0 \mu \mathrm{H} 2016$ inductor for optimum efficiency performance.
Table 1. Recommended Inductors

Inductor	Description
L	$1.0 \mu \mathrm{H}, \pm 20 \%, 2.1 \mathrm{~A}, 2012$ Case Size Cynte: PSK20121T-1R0MS-63
	$1.0 \mu \mathrm{H}, \pm 20 \%, 2.2 \mathrm{~A}, 2016$ Case Size Toko: DFE201610R-H-1R0M

Capacitor Selection

The minimum required output capacitor Cout should be one (1) $4.7 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}$ with an ESR of $10 \mathrm{~m} \Omega$ or lower and an ESL of 0.3 nH or lower in parallel after inductor L1. Larger case sizes result in increased loop parasitic inductance and higher noise. One $4.7 \mu \mathrm{~F}$ capacitor should be used as a decoupling capacitor at the GSM/EDGE PA $V_{c c} p i n$ and another $4.7 \mu \mathrm{~F}$ capacitor should be placed at V_{cc} pin of the 3 G/4 G PA.

A 6.8 pF capacitor may be added in parallel with Cout to reduce the capacitor's parasitic inductance.

Table 2. Recommended Capacitor Values

Capacitor	Description
$\mathrm{C}_{\mathbb{I}}$	$10 \mu \mathrm{~F}, \pm 20 \%$, X5R, 6.3 V, 0402 $(1005$ metric) TDK C1005X5R0J106M
$\mathrm{C}_{\text {out }}$	$4.7 \mu \mathrm{~F}, \pm 20 \%$, X5R, 6.3 V, 0402 $(1005$ metric)TDK C1005X5R0J475K

PCB Layout and Component Placement

- The key point in the placement is the power ground (PGND) connection shared between the FAN5909, CIN, and COUT. This minimizes the parasitic inductance of the switching loop paths.
- Place the inductor away from the feedback pins to prevent unpredictable loop behavior.
- Ensure the traces are wide enough to handle the maximum current value, especially in Bypass Mode.
- Ensure the vias are able to handle the current density. Use filled vias if available.
- Refer to Fairchild's application note: AN-9726 - The Importance of PCB Design for FAN590x Family.

Product Specific Dimensions

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}	Unit
1.615 ± 0.030	1.615 ± 0.030	0.2075	0.2075	mm

REVISIONS			
REV	DESCRIPTION	DATE	APP'D/SITE
1	Initial drawing release.	$3-31-08$	L. England
2	Changed land pad solder mask to individual pad openings. Other general updates for drawing consistency.	$3-31-08$	L. England / FSME

TOP VIEW

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

NOTES:

A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
命. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC016AArev2.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

