

High Luminous Efficacy RGBA LED Emitter

Key Features

- High Luminous Efficacy 10W RGBA LED
- Individually addressable Red, Green, Blue and Amber die
- White point tunable to any CCT or hue with enhanced CRI
- Ultra-small foot print 7.0mm x 7.0mm
- Surface mount ceramic package with integrated glass lens
- Very low Thermal Resistance (1.1°C/W)
- Very high Luminous Flux density
- JEDEC Level 1 for Moisture Sensitivity Level
- Autoclave compliant (JEDEC JESD22-A102-C)
- Lead (Pb) free and RoHS compliant
- Reflow solderable (up to 6 cycles)
- Emitter available on Standard MCPCB (optional)

Typical Applications

- Architectural Lighting
- Retail Spot and Display Lighting
- Stage and Studio Lighting
- Hospitality Lighting
- Museum Lighting
- Dental and Medical Illumination
- Microscope Illumination
- Video Walls and Full Color Displays

Description

The LZ4-00MA00 RGBA LED emitter contains one red, green, blue and amber LED die which provides 10W power in an extremely small package. With a 7.0mm x 7.0mm ultra-small footprint, this package provides exceptional luminous flux density. LED Engin's RGBA LED offers ultimate design flexibility with individually addressable die. The LZ4-00MA00 is capable of producing any white color temperature with CRI values on the order of 90+ and millions of colors. The patent-pending design has unparalleled thermal and optical performance. The high quality materials used in the package are chosen to optimize light output and minimize stresses which results in monumental reliability and lumen maintenance. The robust product design thrives in outdoor applications with high ambient temperatures and high humidity.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Part number options

Base part number

Part number	Description
LZ4-00MA00-xxxx	LZ4 emitter
LZ4-20MA00-xxxx	LZ4 emitter on 4 channel Standard Star MCPCB

Bin kit option codes

MA, Red-Green-Blue-Amber (RGBA)						
Kit number suffix	Min flux Bin	Color Bin Range	Description			
0000	09R	R2 – R2	Red full distribution flux; full distribution wavelength			
	12G	G2 – G3	Green full distribution flux; full distribution wavelength			
	01B	B01– B02	Blue full distribution flux; full distribution wavelength			
	01A	A9 – A9	Amber full distribution flux; full distribution wavelength			

Notes:

1. Default bin kit option is -0000

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Luminous Flux Bins

			Table 1:						
Minimum					Maxi	mum			
Luminous Flux (Φ _v)			Luminous Flux (Φ_v)						
@ I _F = 700mA ^[1,2]		@ I _F = 700mA ^[1,2]							
	(Im)				(Im)				
Red	Green	Blue	Amber	Red	Green	Blue	Amber		
90				140					
	125				195				
		17				27			
		27				43			
			60				95		
-		Luminous @ I _F = 70 (In <u>Red Green</u> 90	Luminous Flux (Φ _v) @ I _F = 700mA ^[1,2] (Im) Red Green 90 125 17	Minimum Luminous Flux (Φ _v) @ I _F = 700mA ^[1,2] (Im) Red Green Blue Amber 90 125 17 27 27	Minimum Luminous Flux (Φ _V) @ I _F = 700mA ^[1,2] [m] (Im) Red Green Blue Amber Red 90 140 140 140 140 125 17 27 27 27 27 27 10 <td>Minimum Maxi Luminous Flux (Φ_V) Luminous @ I_F = 700mA^[1,2] @ I_F = 70 (Im) (Ir Red Green Blue Amber Red Green 90 140 195 125 195 17 27</td> <td>$\begin{tabular}{ c c c c } \hline Minimum & Maximum \\ Luminous Flux (\$\Phi_V\$) & Luminous Flux (\$\Phi_V\$) \\ &$</td>	Minimum Maxi Luminous Flux (Φ_V) Luminous @ I _F = 700mA ^[1,2] @ I _F = 70 (Im) (Ir Red Green Blue Amber Red Green 90 140 195 125 195 17 27	$\begin{tabular}{ c c c c } \hline Minimum & Maximum \\ Luminous Flux (Φ_V) & Luminous Flux (Φ_V) \\ & & & & & & & & & & & & & & & & & & $		

Notes for Table 1:

1. Luminous flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ±10% on flux measurements.

2. Future products will have even higher levels of radiant flux performance. Contact LED Engin Sales for updated information.

Dominant Wavelength Bins

				Table 2:				
	Minimum				Maxir	num		
	Dominant Wavelength (λ _D) @ I _F = 700mA ^[1,2] (nm)		Dominant Wavelength (λ_{D})					
Bin Code			@ I _F = 700mA ^[1,2]					
				(nm)				
	Red	Green ^[2]	Blue	Amber	Red	Green ^[2]	Blue	Amber
R2	618				630			
G2		520				525		
G3		525				530		
B01			452				457	
B02			457				462	
A9				590				595

Notes for Table 2:

1. LED Engin maintains a tolerance of ± 1.0nm on dominant wavelength measurements.

2. Green LEDs are binned for dominant wavelength @ I_F = 350mA. Refer to Figure 6 for typical dominant wavelength shift over forward current.

Forward Voltage Bin

				Table 3:				
Minimum					Maxi	mum		
		Forward Voltage (V _F)				Forward V	oltage (V _F)
Bin Code		@ I _F = 700mA ^[1]			@ I _F = 700mA ^[1]			
		(V)		(V)				
	Red	Green	Blue	Amber	Red	Green	Blue	Amber
0	2.00	3.20	3.20	2.24	2.96	4.40	4.48	3.44

Notes for Table 3:

1. LED Engin maintains a tolerance of ± 0.04V on forward voltage measurements.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Absolute Maximum Ratings

	Table 4:		
Parameter	Symbol	Value	Unit
DC Forward Current (@ T _J = 135°C) ^[1]	١ _F	1200	mA
DC Forward Current (@ T _J = 150°C)	١ _F	1000	mA
Peak Pulsed Forward Current ^[2]	I _{FP}	1500	mA
Reverse Voltage	V _R	See Note 3	V
Storage Temperature	T _{stg}	-40 ~ +150	°C
Junction Temperature [blue, green]	TJ	150	°C
Junction Temperature [red, amber]	TJ	125	°C
Soldering Temperature ^[4]	T _{sol}	260	°C
Allowable Reflow Cycles		6	
Autoclave Conditions ^[5]	121°C at 2 ATM, 100% RH for 168 hours		
ESD Sensitivity ^[6]		> 8,000 V HBM Class 3B JESD22-A114-D	

Notes for Table 4:

1. Maximum DC forward current is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 11 for current derating.

2: Pulse forward current conditions: Pulse Width \leq 10msec and Duty Cycle \leq 10%.

3. LEDs are not designed to be reverse biased.

4. Solder conditions per JEDEC 020D. See Reflow Soldering Profile Figure 3.

5. Autoclave Conditions per JEDEC JESD22-A102-C.

6. LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ4-00MA00

in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.

Optical Characteristics @Tc = 25°C

Table 5:						
Devementer	Symphol		Тур	ical		Unit
Parameter	Symbol	Red	Green	Blue ^[1]	Amber	Unit
Luminous Flux (@ I _F = 700mA)	Φv	115	155	30	75	lm
Luminous Flux (@ I _F = 1000mA)	Φv	160	200	40	95	lm
Dominant Wavelength ^[2,3,4]	λ_{D}	623	523	460	590	nm
Viewing Angle ^[5]	20 _½		9	5		Degrees
Total Included Angle ^[6]	Θ _{0.9}		11	15		Degrees

Notes for Table 5:

1. When operating the Blue LED, observe IEC 60825-1 class 2 rating. Do not stare into the beam.

2. Red, Blue and Amber dominant wavelength @ I_F = 700mA. Green dominant wavelength @ I_F = 350mA.

3. Refer to Figure 6 for typical dominant wavelength shift over forward current.

Refer to Figure 7 for typical dominant wavelength shift over temperature.

5. Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the peak value.

6. Total Included Angle is the total angle that includes 90% of the total luminous flux.

Electrical Characteristics @T_c = 25°C

	Tab	ole 6:				
Parameter	Sumbol		Typical			
Parameter	Symbol	Red	Green	Blue	Amber	Unit
Forward Voltage (@ I _F = 700mA)	V _F	2.2	3.5	3.5	2.5	V
Forward Voltage (@ I _F = 1000mA)	V _F	2.4	3.7	3.7	2.7	V
Temperature Coefficient of Forward Voltage	$\Delta V_F / \Delta T_J$	-1.9	-2.9	-3.0	-2.8	mV/°C
Thermal Resistance (Junction to Case)	RO _{J-C}		1.	.1		°C/W

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

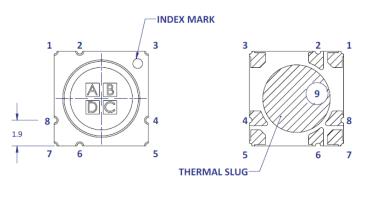
IPC/JEDEC Moisture Sensitivity Level

				Soak Req	uirements	
	Floo	r Life	Standard		Accel	erated
Level	Time	Conditions	Time (hrs)	Conditions	Time (hrs)	Conditions
1	Unlimited	≤ 30°C/ 85% RH	168 +5/-0	85°C/ 85% RH	n/a	n/a

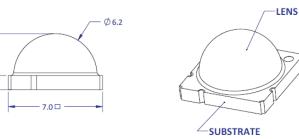
Table 7 - IPC/JEDEC J-STD-20 MSL Classification:

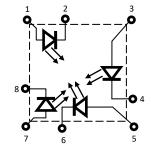
Notes for Table 7:

1. The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer's exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor's facility.


Average Lumen Maintenance Projections

Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original light output remaining at a defined time period.

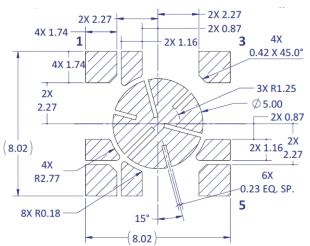

Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Lumen Maintenance at 65,000 hours of operation at a forward current of 700 mA. This projection is based on constant current operation with junction temperature maintained at or below 125°C.



Mechanical Dimensions (mm)

	Pin Out									
Pad	Die	Color	Function							
1	А	Blue	Anode							
2	А	Blue	Cathode							
3	В	Red	Anode							
4	В	Red	Cathode							
5	С	Green	Anode							
6	С	Green	Cathode							
7	D	Amber	Anode							
8	D	Amber	Cathode							
9 [2]	n/a	n/a	Thermal							

Notes for Figure 1:


4.2

1.05

- 1. Unless otherwise noted, the tolerance = ± 0.20 mm.
- 2. Thermal contact, Pad 9, is electrically neutral.

Recommended Solder Pad Layout (mm)

Pedestal MCPCB Design

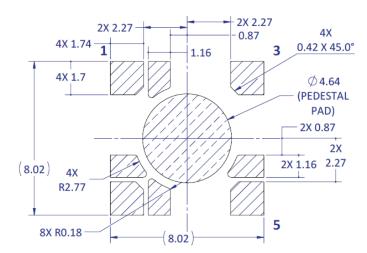


Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad for non-pedestal and pedestal design

Note for Figure 2a:

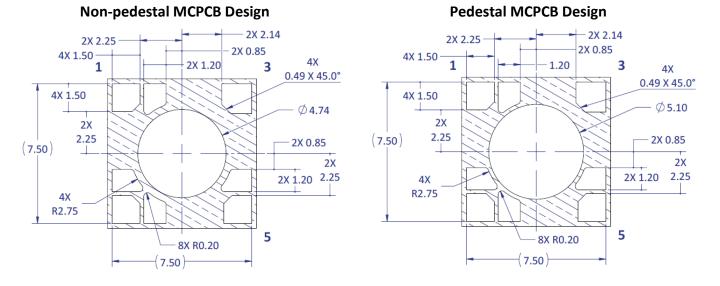
- 1. Unless otherwise noted, the tolerance = ± 0.20 mm.
- Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering the overall system thermal resistance.

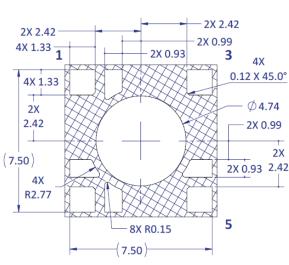
Figure 1: Package Outline Drawing.

3. LED Engin recommends x-ray sample monitoring for solder voids underneath the emitter thermal slug. The total area covered by solder voids should be less than 20% of the total emitter thermal slug area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to higher failure rates due to thermal over stress.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Recommended Solder Mask Layout (mm)




Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad for non-pedestal and pedestal design

Note for Figure 2b:

1. Unless otherwise noted, the tolerance = ± 0.20 mm.

Non-pedestal MCPCB Design

Recommended 8 mil Stencil Apertures Layout (mm)

Pedestal MCPCB Design

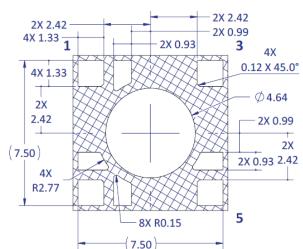


Figure 2c: Recommended 8mil stencil apertures for anode, cathode, and thermal pad for non-pedestal and pedestal design

Note for Figure 2c:

1. Unless otherwise noted, the tolerance = ± 0.20 mm.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Reflow Soldering Profile

Figure 3: Reflow soldering profile for lead free soldering.

Typical Radiation Pattern

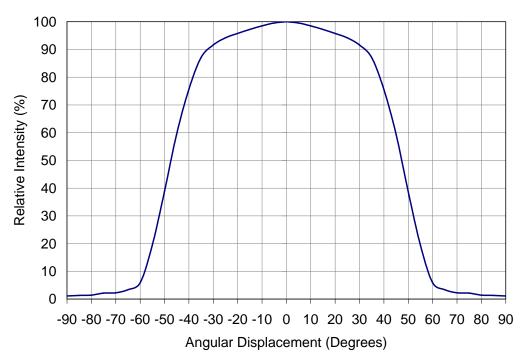


Figure 4: Typical representative spatial radiation pattern.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Typical Relative Spectral Power Distribution

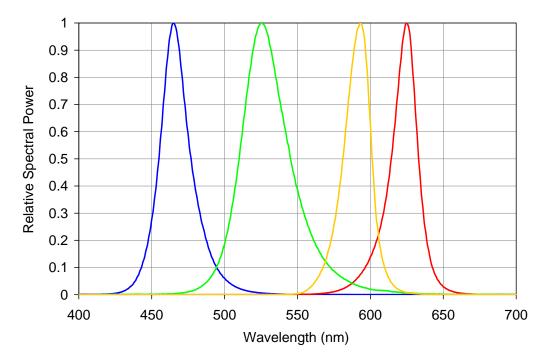


Figure 5: Typical relative spectral power vs. wavelength @ $T_c = 25^{\circ}C$.

Typical Dominant Wavelength Shift

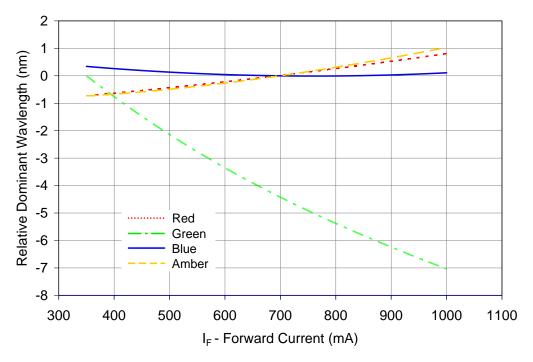


Figure 6: Typical dominant wavelength shift vs. forward current @ $T_c = 25$ °C.

Notes for Figure 6:

- 1. Red, Blue and Amber dominant wavelength relative to I_F = 700mA.
- 2. Green dominant wavelength relative to I_F = 350mA.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Dominant Wavelength Shift over Temperature

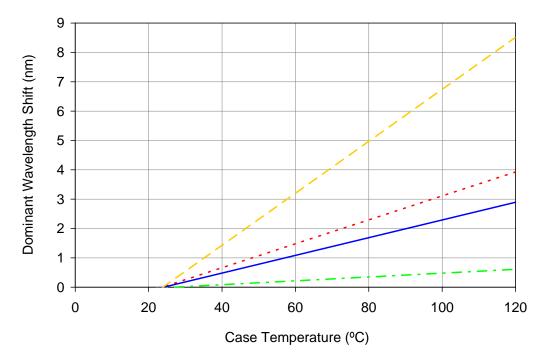


Figure 7: Typical dominant wavelength shift vs. case temperature.

Typical Relative Light Output

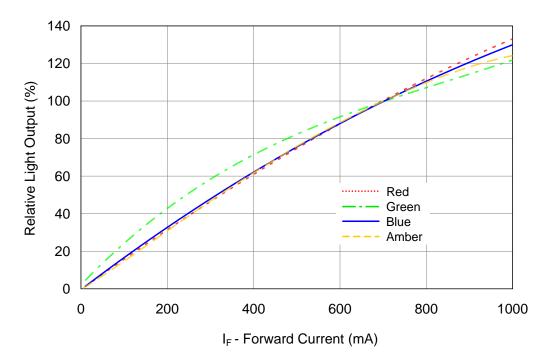


Figure 8: Typical relative light output vs. forward current @ $T_c = 25^{\circ}C$.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Typical Relative Light Output over Temperature

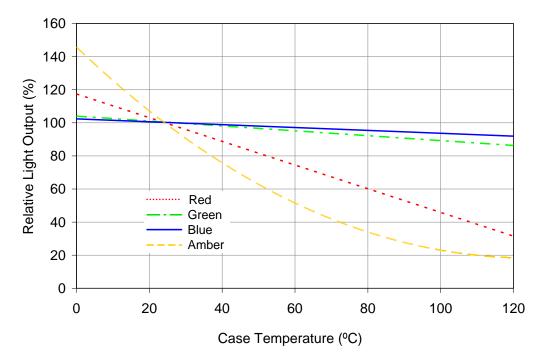


Figure 9: Typical relative light output vs. case temperature.

Typical Forward Current Characteristics

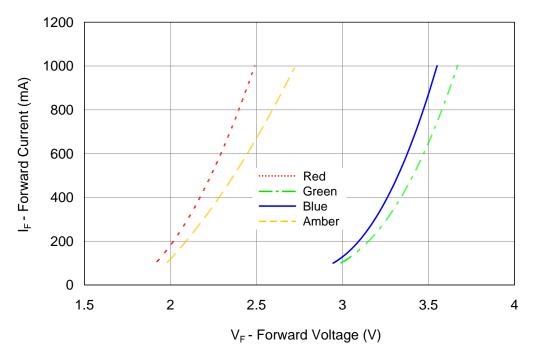
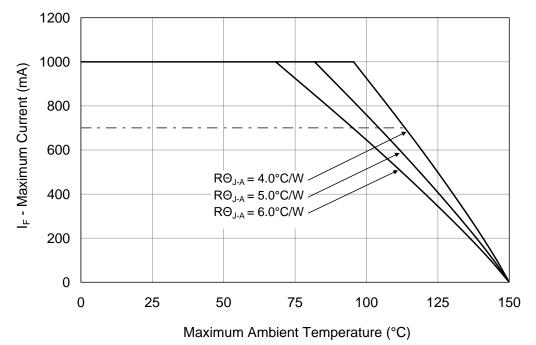
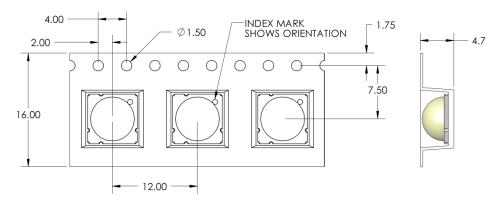


Figure 10: Typical forward current vs. forward voltage @ $T_C = 25^{\circ}C$.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

Current Derating




Figure 11: Maximum forward current vs. ambient temperature based on $T_{J(MAX)}$ = 150°C.

Notes for Figure 11:

- 1. Maximum current assumes that all four LED dice are operating concurrently at the same current.
- 2. $R\Theta_{J-C}$ [Junction to Case Thermal Resistance] for the LZ4-00MA00 is typically 1.1°C/W.
- 3. $R\Theta_{J-A}$ [Junction to Ambient Thermal Resistance] = $R\Theta_{J-C}$ + $R\Theta_{C-A}$ [Case to Ambient Thermal Resistance].

Emitter Tape and Reel Specifications (mm)

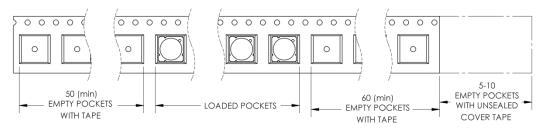


Figure 12: Emitter carrier tape specifications (mm).

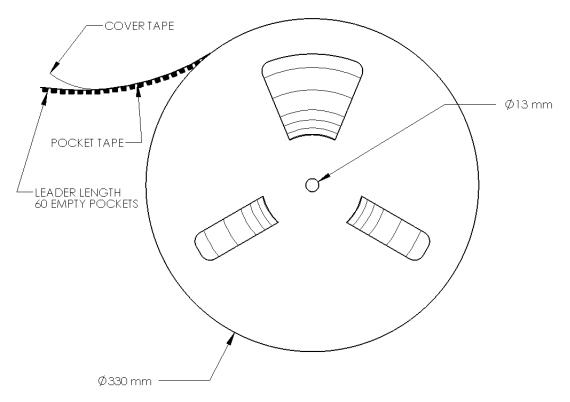


Figure 13: Emitter reel specifications (mm).

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

LZ4 MCPCB Family

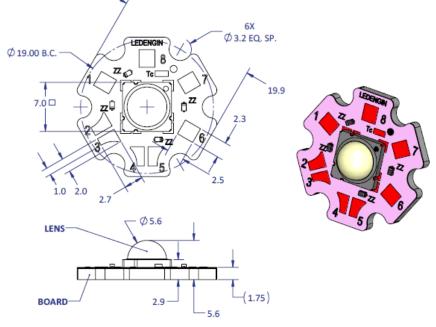
Pa	art number	Type of MCPCB	Diameter (mm)	Emitter + MCPCB Thermal Resistance (°C /W)	Typical V _f (V)	Typical I _f (mA)
LZ	24-2xxxxx	4-channel	19.9	1.1 + 1.1 = 2.2	2.2 – 3.5	700

Mechanical Mounting of MCPCB (Also save to MCPCB main file)

- MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking.
- To avoid MCPCB bending:
 - Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.
 - Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending.
 - It is recommended to always use plastics washers in combinations with the three screws.
 - If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again.

Thermal interface material

- To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink.
- There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal
 epoxies. An example of such material is Electrolube EHTC.
- It is critical to verify the material's thermal resistance to be sufficient for the selected emitter and its operating conditions.


Wire soldering

- To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150°C.
 Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W.
- It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601)

LZ4-2xxxxx

4 channel, Standard Star MCPCB (4x1) Dimensions (mm)

Notes:

- Unless otherwise noted, the tolerance = ± 0.2 mm.
- Slots in MCPCB are for M3 or #4-40 mounting screws.
- LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.
- LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.
- The thermal resistance of the MCPCB is: ROC-B 1.1°C/W

Components used

MCPCB:	HT04503	(Bergquist)
ESD chips:	BZT52C5-C10	(NPX, for 1 LED die)

Pad layout			
Ch.	MCPCB Pad	String/die	Function
1	1	1/A	Anode +
	8		Cathode -
2	7	2/B	Anode +
	6		Cathode -
3	5	3/C	Anode +
	4		Cathode -
4	3	4/D	Anode +
	2		Cathode -

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.

About LED Engin

LED Engin, an OSRAM business based in California's Silicon Valley, develops, manufactures, and sells advanced LED emitters, optics and light engines to create uncompromised lighting experiences for a wide range of entertainment, architectural, general lighting and specialty applications. LuxiGen[™] multi-die emitter and secondary lens combinations reliably deliver industry-leading flux density, upwards of 5000 quality lumens to a target, in a wide spectrum of colors including whites, tunable whites, multi-color and UV LEDs in a unique patented compact ceramic package. Our LuxiTune[™] series of tunable white lighting modules leverage our LuxiGen emitters and lenses to deliver quality, control, freedom and high density tunable white light solutions for a broad range of new recessed and downlighting applications. The small size, yet remarkably powerful beam output and superior insource color mixing, allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions; and reserves the right to make changes to improve performance without notice.

For more information, please contact LEDE-Sales@osram.com or +1 408 922-7200.

COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.