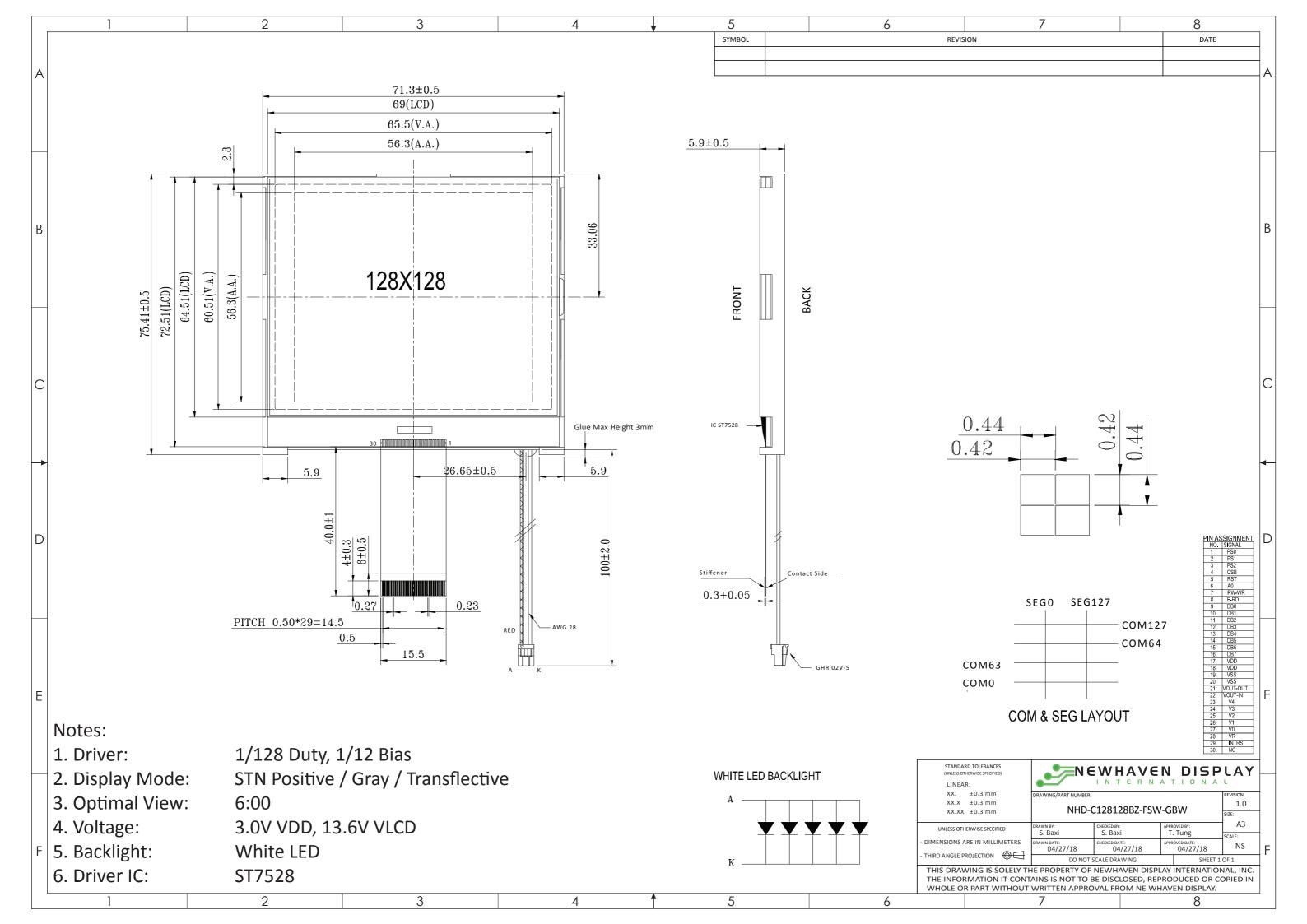


NHD-C128128BZ-FSW-GBW

COG (Chip-On-Glass) Liquid Crystal Display Module

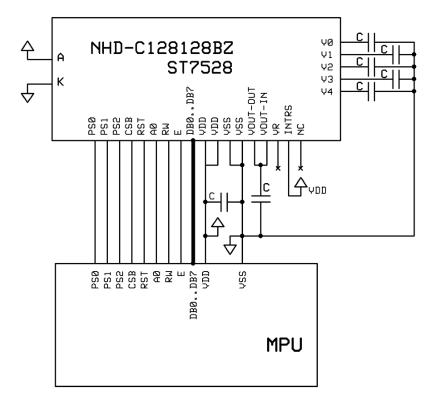
NHD-	Newhaven Display
C128128-	128 x 128 Pixels
BZ-	Model
F-	Transflective
SW-	Side White LED Backlight
G-	STN-Gray
В-	6:00 Optimal View
W-	Wide Temp
	RoHS Compliant


Newhaven Display International, Inc. 2661 Galvin Ct. Elgin IL, 60124 Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	6/17/2007	Initial Release	-
1	9/23/2009	User guide reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	11/20/2009	Updated backlight supply current	MC
4	3/4/2011	Updated table of commands	AK
5	8/25/16	Mechanical Drawing, Electrical & Optical Char. Updated	SB
6	4/27/18	Mechanical Drawing & Electrical Characteristics Updated	SB

Functions and Features


- 128 x 128 pixels
- Built-in ST7528 controller
- +3.0V power supply
- 1/128 duty cycle; 1/12 bias
- RoHS Compliant

Pin Description and Wiring Diagram

	•	U						
Pin No.	Symbol	External Connection	Function Description					
1	PS0	Input	Parallel/serial data input select input					
2	PS1	Input	(see Parallel/Serial Select table)					
3	PS2	Input	IIC not available (tie low)					
4	CSB	MPU	Active LOW Chip select					
5	RST	MPU	Active LOW Reset signal					
6	AO	MPU	Register select signal. A0=1: Data, A0=0: Command					
7	R/W	MPU	6800 Mode: Read/Write select signal. R/W=1: Read R/W: =0:					
	/WR		Write					
			8080 Mode: Active LOW Write Signal					
8	E	MPU	6800 Mode: Active HIGH Enable Signal					
	/RD		8080 Mode: Active LOW Read Signal					
9-16	DB0-DB7	MPU	Bi-directional, three-state data bus lines					
17,18	V _{DD}	Power Supply	Supply Voltage for logic (3.0V)					
19,20	Vss	Power Supply	Ground					
21	Vout	Power Supply	Voltage booster circuit – connect to 1uF cap to Vss or VDD					
22	VIN	Power Supply	Tie to Vout					
23	V4	Power Supply	1.0uF-2.2uF cap to VSS					
24	V3	Power Supply	1.0uF-2.2uF cap to VSS					
25	V2	Power Supply	1.0uF-2.2uF cap to VSS					
26	V1	Power Supply	1.0uF-2.2uF cap to VSS					
27	V ₀	Power Supply	1.0uF-2.2uF cap to VSS					
28	VR	-	No Connect					
29	INTRS	Input	Internal resistor select pin: VDD=Enabled					
30	NC	-	No Connect					

Recommended LCD connector: 0.5mm pitch, 30 pin FFC. Molex p/n: 52892-3095 **Backlight connector:** GHR-02V-S **Mates with**: BM02B-GHS-T

Parallel/Serial Select Table

PS2	PS1	PSO	Interface mode	Data/ Command	Data	Read/ Write	Serial clock
L	L	Н	Parallel 80	A0	DB0 to DB7	RD/WR	-
L	Н	Н	Parallel 68	A0	DB0 to DB7	E/RW	-
L	L	L	3Line Serial	-	SID (DB7)	Write only	SCLK (DB6)
L	Н	L	4Line Serial	A0	SID (DB7)	Write only	SCLK (DB6)

*Cannot read data from RAM in 4-line, 3-line, or IIC interface.

*In 4-line or 3-line interface, DB0-DB5, E, and RW must be tied High or Low

*In IIC or 3-line interface, A0 must be tied High or Low

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	TOP	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Т _{sт}	Absolute Max	-30	-	+80	°C
Supply Voltage	V _{DD}	-	2.7	3.0	3.3	V
Supply Current	IDD	V _{DD} = 3.0V	0.5	1.0	1.5	mA
Supply for LCD (contrast)	V_{LCD}	T _{OP} = 25°C	13.3	13.6	13.9	V
"H" Level input	VIH	-	2.2	-	V _{DD}	V
"L" Level input	VIL	-	Vss	-	0.6	V
"H" Level output	Vон	-	2.4	-	V _{DD}	V
"L" Level output	Vol	-	Vss	-	0.4	V
Backlight supply voltage	VLED	-	3.0	3.3	3.5	V
Backlight supply current	ILED	$V_{LED} = 3.3V$	30	45	60	mA

Optical Characteristics

	lte	m	Symbol	Condition	Min.	Тур.	Max.	Unit
Optimal	Тор		φΥ+		-	35	-	0
	Bott	om	φY-	CR ≥ 2	-	60	-	0
Viewing Angles	Left		θX-	CR 2 2	-	60	-	0
Angles	Righ	t	θX+		-	60	-	0
Contrast Rat	Contrast Ratio		CR	-	2	6	-	-
Bosponso T	ima	Rise	T _R			150	250	ms
Response Ti	inie	Fall	TF	Т _{ОР} = 25°С	-	200	300	ms

Controller Information

Built-in ST7528 controller.

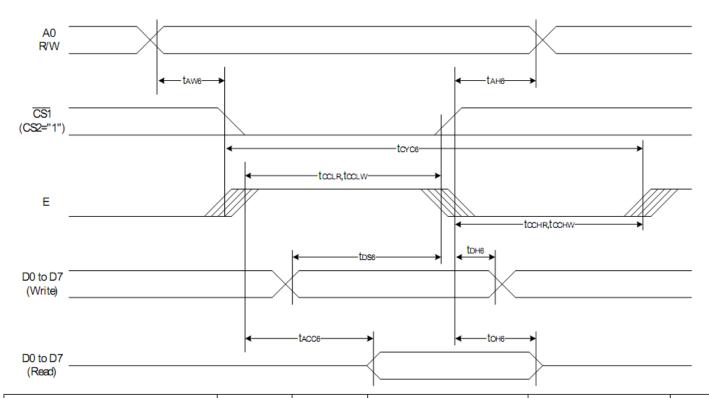

Please download specification at http://www.newhavendisplay.com/app_notes/ST7528.pdf

Table of Commands

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set Mode and
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	R(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	×	×	2-byte instruction to specify the initial display line to realize
	0	0	×	S6	S5	S4	S3	S 2	S 1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x	×	2-byte instruction to specify the initial COM0 to realize
	0	0	×	C 6	C5	C4	C3	C2	C1	C0	window scrolling
Set partial display duty ration	0	0	0	1	0	0	1	0	×	×	2-byte instruction to set partial
Get partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x	×	2-byte instruction to set N-line
Set N-line inversion	0	0	×	x	×	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Instruction	A 0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
Ext=0												
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation	
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter	
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor	
Select electronic volumn	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify	
register	0	0	×	x'	EV5	EV4	EV3	EV2	EV1	EV0	the reference voltage	
Select LCD bias	0	0	0	1	0	1	0	B2	B1	B0	Select LCD bias	
Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save Save the Bias	
bias Power Save	0	0	0	0	0	0	0	0	0	0	current consumption	
SHL select	0	0	1	1	0	0	SHL	x	×	×	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction	
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction	
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator	
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode P=1: sleep mode	
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode	
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function	
Set data direction &	×	x	1	1	1	0	1	0	0	0	2-byte instruction to specify	
display data length(DDL)	×	x	D7	D6	D5	D4	D3	D2	D1	D0	the number of data bytes. (SPI mode)	
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	FRC(1:3FRC, 0:4FRC) PWM1 PWM0 0 0 45PWM 0 1 45 PWM 1 0 60PWM 1 1	
NOP	0	0	1	1	1	0	0	0	1	1	No operation	
Test Instruction	0	0	1	1	1	1	x	x'	×	x'	Don't use this instruction	

Timing Characteristics

lterre	Signal Symbol		Condition	Rat	ing	Unite
Item	Signal	Symbol	Condition	Min.	Max.	- Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0	_	
System cycle time		tCYC6		240	_	
Enable L pulse width (WRITE)	WR	tEWLW		80	_	
Enable H pulse width (WRITE)		tEWHW		80	_	
Enable L pulse width (READ)	RD	tEWLR		80	_	ns
Enable H pulse width (READ)		tEWHR		140		
WRITE Data setup time		tDS6		40	_	
WRITE Data hold time		tDH6		10	_	
READ access time	D0 to D7	tACC6	CL = 100 pF	_	70	
READ Output disable time		tOH6	CL = 100 pF	5	50	

Example Initialization Program

void write_command(unsigned char datum) { /*Instruction register*/ A0=0; /*Read inactive*/ E=1; bus=datum; /*put data on port 1*/ CSB=0; /*Chip select active*/ /*Write active*/ RW=0; RW=1; /*Write inactive; latch in data*/ /*Chip select inactive*/ CSB=1; } void write data(unsigned char datum) { A0=1; /*DDRAM data register*/ E=1; bus=datum; CSB=0; RW=0; RW=1; CSB=1; } void lcd init(void){ write command(0xA2); //ICON OFF; write command(0xAE); //Display OFF //Set Duty ratio write command(0x48); write command(0x80); //No operation write command(0xa0); //Set scan direction write command(0xc8); //SHL select write command(0x40); //Set START LINE write command(0x00); write_command(0xab); //OSC on //3x write_command(0x64); delay(2000); write command(0x65); //4x delay(2000); write_command(0x66); //5x delay(2000); //6x write_command(0x67); delay(2000); write command(Ra Rb); //RESISTER SET write command(0x81); //Set electronic volume register write command(vopcode); //n=0~3f write command(0x57); //1/12bias write command(0x92); //FRC and pwm write command(0x2C); delay(20000);//200ms write_command(0x2E); delay(20000);//200ms write command(0x2F); delay(20000);//200ms

write_command(0x92);	//frc and nwm
write_command(0x38);	
write_command(0x75);	
/*** start settings for	16-level grayscale ***/
write command(0x97);	//3frc,45pwm
write command(0x80);	
write_command(0x00);	
write command(0x81);	
write_command(0x00);	
write_command(0x82);	
write_command(0x00);	
write_command(0x83);	
write_command(0x00);	
write_command(0x84);	
write_command(0x06);	
write command(0x85);	
write_command(0x06);	
write command(0x86);	
write_command(0x06);	
write_command(0x87);	
write_command(0x06);	
write_command(0x88);	
write_command(0x0b);	
write_command(0x89);	
write_command(0x0b);	
write_command(0x8a);	
write_command(0x0b);	
write_command(0x8b);	
write_command(0x0b);	
_	
write command(0x8c);	
write command(0x10);	
write_command(0x8d);	
write_command(0x10);	
write_command(0x8e);	
<pre>write_command(0x10); write command(0x8f);</pre>	
write_command(0x10);	
write_command(0x90);	
write_command(0x15);	
write_command(0x91);	
write_command(0x15);	
write_command(0x92);	
write_command(0x15);	
write_command(0x93);	
write_command(0x15);	
write_command(0x94);	
write_command(0x1a);	
write_command(0x95);	
write_command(0x1a);	
write_command(0x96);	
write_command(0x1a);	
write_command(0x97);	
write_command(0x1a);	

write_command(0x98);

write command(0x1e); write command(0x99); write command(0x1e); write_command(0x9a); write_command(0x1e); write_command(0x9b); write command(0x1e); write command(0x9c); write command(0x23); write_command(0x9d); write_command(0x23); write_command(0x9e); write command(0x23); write command(0x9f); write_command(0x23); write_command(0xa0); write_command(0x27); write command(0xa1); write command(0x27); write_command(0xa2); write_command(0x27); write_command(0xa3); write_command(0x27); write command(0xa4); write_command(0x2b); write_command(0xa5); write_command(0x2b); write_command(0xa6); write command(0x2b); write command(0xa7); write_command(0x2b); write_command(0xa8); write_command(0x2f); write command(0xa9); write command(0x2f); write_command(0xaa); write_command(0x2f); write_command(0xab); write_command(0x2f); write command(0xac); write command(0x32); write_command(0xad); write_command(0x32); write_command(0xae); write command(0x32); write command(0xaf); write_command(0x32); write_command(0xb0); write_command(0x35); write command(0xb1); write command(0x35); write command(0xb2); write command(0x35); write_command(0xb3);

write_command(0x35);

write command(0xb4); write_command(0x38); write_command(0xb5); write_command(0x38); write_command(0xb6); write_command(0x38); write command(0xb7); write_command(0x38); write_command(0xb8); write_command(0x3a); write_command(0xb9); write_command(0x3a); write_command(0xba); write_command(0x3a); write_command(0xbb); write_command(0x3a); write_command(0xbc); write_command(0x3c); write_command(0xbd); write_command(0x3c); write_command(0xbe); write_command(0x3c); write_command(0xbf); write_command(0x3c); //end settings for 16-level grayscale write_command(0x38); write_command(0x74); write_command(0xaf); //Display ON }

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C , 90% RH , 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	-0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at <u>www.newhavendisplay.com/specs/precautions.pdf</u>

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms