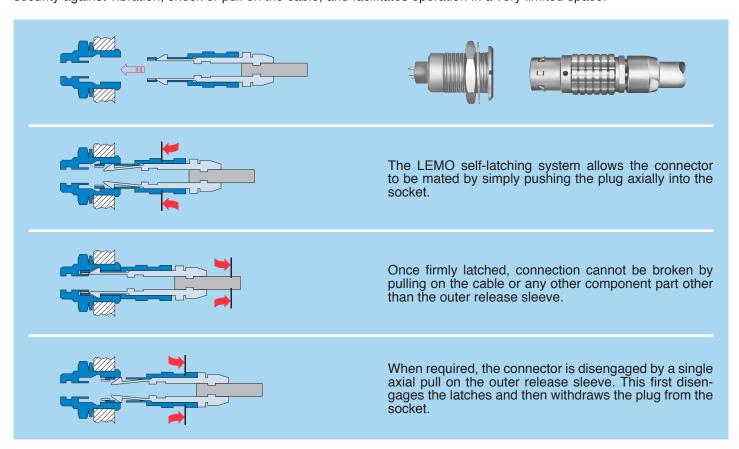
HIGH PRESSURE CONNECTORS V SERIES

Precision modular connectors to suit your application

Since its creation in Switzerland in 1946 the LEMO Group has been recognized as a global leader of circular Push-Pull connectors and connector solutions. Today LEMO and its affiliated companies, REDEL and COELVER, are active in more than 80 countries with the help of over 40 subsidiaries and distributors.


Over 75000 connectors

The modular design of the LEMO range provides over 75000 connectors from miniature ø 3 mm to ø 50 mm, capable of handling cable diameters up to 30 mm and for up to 114 contacts.

This vast portfolio enables you to select the ideal connector configuration to suit almost any specific requirement in most markets, including medical devices, test and measurement instruments, machinery, audio video broadcast, telecommunications and military.

LEMO's Push-Pull Self-Latching Connection System (not shown in this catalogue)

This self-latching system is renowned worldwide for its easy and quick mating and unmating features. It provides absolute security against vibration, shock or pull on the cable, and facilitates operation in a very limited space.

UL Recognition 🔊

LEMO connectors are recognized by the Underwriters Laboratories (UL). The approval of the complete system (LEMO connector, cable and your equipment) will be easier because LEMO connectors are recognized.

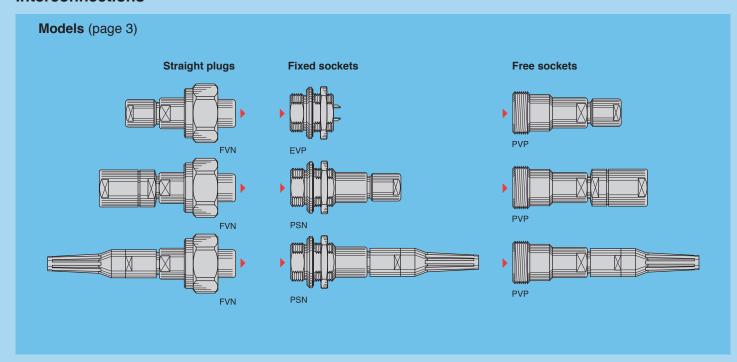
CE marking CE

CE marking

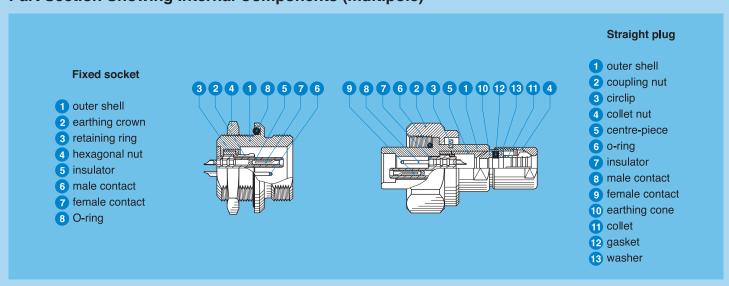
← means that the appliance or equipment bearing it complies with the protection requirements of one or several European safety directives. CE marking ← applies to complete products or equipment, but not to electromechanical components, such as connectors.

RoHS

LEMO connector specifications conforms the requirements of the RoHS directive (2011/65/EU) of the European Parliament and the latest amendments. This directive specifies the restrictions of the use of hazardous substances in electrical and electronic equipment marketed in Europe.

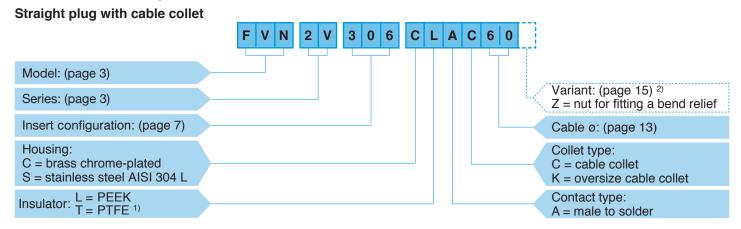


V Series

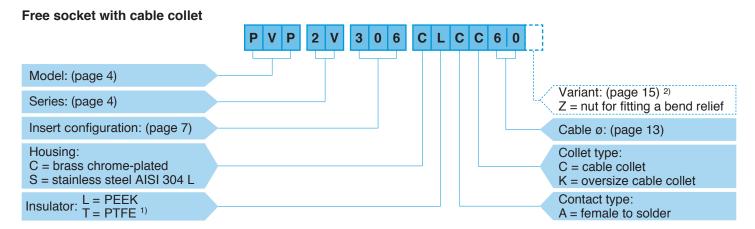

V series connectors have been developed for utilisation where protection must be guaranteed under high pressures of liquids. The basic elements, insulators, contacts and clamping system are from the S and E series. The push-pull latching system has been replaced by a screw coupling system with watertightness maintained by compression of an O-ring in FPM (Viton®) according to the triangular shaped cavity principle. There are multiple application possibilities, from nuclear physics to the petroleum industry. After cable assembly the rear part must be covered with an adhesive heatshrink boot in order to ensure watertightness on the cable side. V series connectors provide the following main features:

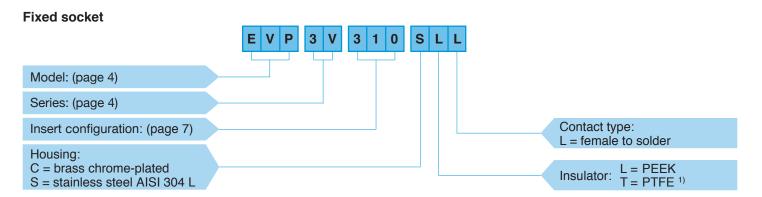
- unipole and multipole type
- coaxial, triaxial or mixed type available upon request
- polarisation by stepped insert (half moon)
 360° screening for full EMC shielding
- rugged housing for extreme working conditions.

Interconnections



Part Section Showing Internal Components (multipole)




Part Number Example

FVN.2V.306.CLAC60 = straight plug with cable collet, 2V series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, male solder contacts, C type collet for 6 mm diameter cable.

PVP.2V.306.CLLC60 = free socket with cable collet, 2V series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, female solder contacts, C type collet for 6 mm diameter cable.

EVP.3V.310.SLL = fixed socket, nut fixing, 3V series, multipole type with 10 contacts, outer shell in stainless steel, PEEK insulator, female solder contacts.

Note: 1) PTFE insulator for unipole type only.

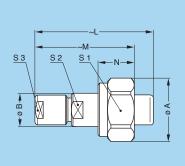
²⁾ The «Variant» position in the reference is used to specify either the presence of a collet nut for fitting the bend relief. For models with collet nut for fitting the bend relief, a «Z» should be indicated and a bend relief can be ordered separately. An order for a connector with bend relief should thus include two part numbers.

Models

Technical Characteristics

Mechanical and Climatical

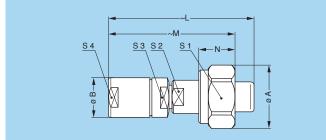
Characteristics	Value	Standard
Endurance	> 1000 cycles	IEC 60512-5 test 9a
Temperature range	-20	° C, +200° C
Salt spray corrosion test	> 144h	IEC 60512-6 test 11f
Protection index (mated)	> IP 68	IEC 60529
Resistance to hydrostatic pressure (mated)	~ 30 bars 1)	IEC 60512-7 test 14d
Climatical category	20/200/21	IEC 60068-1


Electrical

Characteri	stics	Value	Standard				
Shielding	at 10 MHz	> 95 dB	IEC 60169-1-3				
efficiency	at 1 GHz	> 80 dB	IEC 60169-1-3				

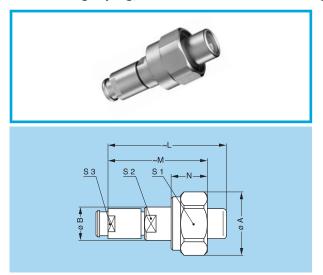
Note: $^{\rm 1)}$ in order to perform correctly and withstand the pressure, cable assembly shall be made according to instruction we recommand. See page 18.

FVN Straight plug with cable collet

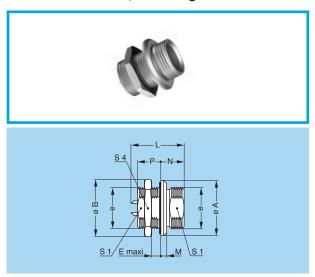


Refe	rence		Dimensions (mm)										
Model	Series	Α	В	L	М	N	S1	S2	S3				
FVN	0V	17.2	10	34.0	29	13.5	16	9	8				
FVN	1V	19.3	12	43.0	35	14.0	18	10	9				
FVN	2V	23.5	16	52.5	42	15.5	22	14	12				
FVN	3 V	27.8	18	61.0	47	16.5	26	16	15				
FVN	4 V	34.3	24	71.0	57	17.5	32	22	19				
FVN	5 V	50.0	38	94.0	78	21.0	47	34	30				

FVN Straight plug with oversize cable collet 1)


Refe	rence		Dimensions (mm)										
Model	Series	Α	В	L	М	N	S1	S2	S3	S4			
FVN	1V	19.3	14.5	55	47	14.0	18	10	12	12			
FVN	2V	23.5	17.0	65	55	15.5	22	14	15	15			
FVN	3 V	27.8	22.0	80	66	16.5	26	16	19	19			
FVN	4V	34.3	36.0	105	91	17.5	32	22	30	32			

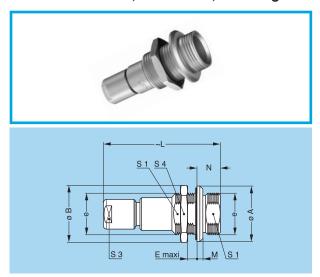
Note: $^{1)}$ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 13).


FVN Straight plug, cable collet and nut for fitting a bend relief 1)

Refe	rence		Dimensions (mm)										
Model	Series	Α	В	L	М	N	S1	S2	S3				
FVN	0V	17.2 10		34	29	13.5	16	9	7				
FVN	1V	19.3	12	43	35	14.0	18	10	9				
FVN	2V	23.5	16	52	42	15.5	22	14	12				
FVN	3 V	27.8	18	60	47	16.5	26	16	15				
FVN	4 V	34.3	24	71	57	17.5	32	22	19				

Note: $^{1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog).

EVP Fixed socket, nut fixing



Refe	rence		Dimensions (mm)										
Model	Series	Α	A B e		Е	L		N	Р	S1	S4		
EVP	0V	19	19.2	M14x1.0	5.5	19.0	2.0	8.0	8.0	12.5	17		
EVP	1V	21	21.5	M16x1.0	10.5	26.0	2.0	8.0	13.5	14.5	19		
EVP	2V	26	27.0	M20x1.0	11.0	29.0	2.5	9.0	15.0	18.5	24		
EVP	3 V	31	34.0	M24x1.0	15.0	34.5	3.0	9.5	20.0	22.5	30		
EVP	4 V	38	40.5	M30x1.0	14.5	35.0	3.5	10.0	21.5	28.5	36		
EVP	5 V	55	54.0	M45x1.5	15.5	44.5	4.5	12.5	24.5	42.5	-		

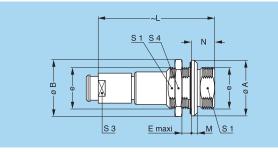
Panel cut-out (page 15)

Note: the 5V series is delivered with a round nut.

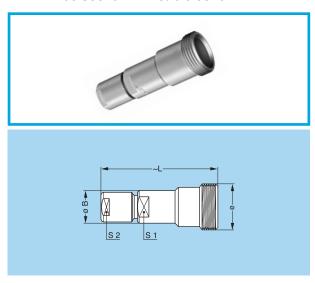
PSN Fixed socket, cable collet, nut fixing

Refe	rence		Dimensions (mm)										
Model	Series	Α	Ве		А В е		Е	L M		N	S1	S3	S4
PSN	0V	19	19.2	M14x1.0	5.5	34.0	2.0	8.0	12.5	8	17		
PSN	1V	21	21.5	M16x1.0	10.5	46.0	2.0	8.0	14.5	9	19		
PSN	2V	26	27.0	M20x1.0	11.0	54.0	2.5	9.0	18.5	12	24		
PSN	3 V	31	34.0	M24x1.0	15.0	65.0	3.0	9.5	22.5	15	30		
PSN	4 V	38	40.5	M30x1.0	14.5	75.5	3.5	10.0	28.5	19	36		
PSN	5 V	56	54.0	M45x1.5	15.5	95.0	4.5	12.5	42.5	30	-		

Panel cut-out (page 15)

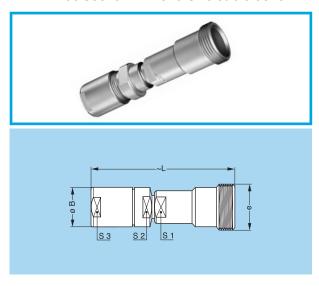

Note: the 5V series is delivered with a round nut.

PSN Fixed socket, cable collet, nut fixing and nut for fitting a bend relief 1)



Refe	rence		Dimensions (mm)										
Model	Series	A B e		Е	ELIN		N	S1	S3	S4			
PSN	0V	19	19.2	M14x1.0	5.5	34.0	2.0	8.0	12.5	7	17		
PSN	1V	21	21.5	M16x1.0	10.5	46.0	2.0	8.0	14.5	9	19		
PSN	2V	26	27.0	M20x1.0	11.0	54.0	2.5	9.0	18.5	12	24		
PSN	3 V	31	34.0	M24x1.0	15.0	64.0	3.0	9.5	22.5	15	30		
PSN	4 V	38	40.5	M30x1.0	14.5	75.5	3.5	10.0	28.5	19	36		

Panel cut-out (page 15)

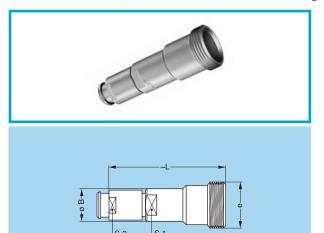

Note: $^{\rm 1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog).

PVP Free socket with cable collet

Refe	rence	Dimensions (mm)									
Model	Series	В	е	L	S1	S2					
PVP	0V	10	M14x1.0	34.0	9	8					
PVP	1V	12	M16x1.0	45.0	10	9					
PVP	2V	16	M20x1.0	54.0	14	12					
PVP	3 V	19	M24x1.0	65.0	16	15					
PVP	4 V	24	M30x1.0	75.5	22	19					
PVP	5 V	38	M45x1.5	95.0	34	30					

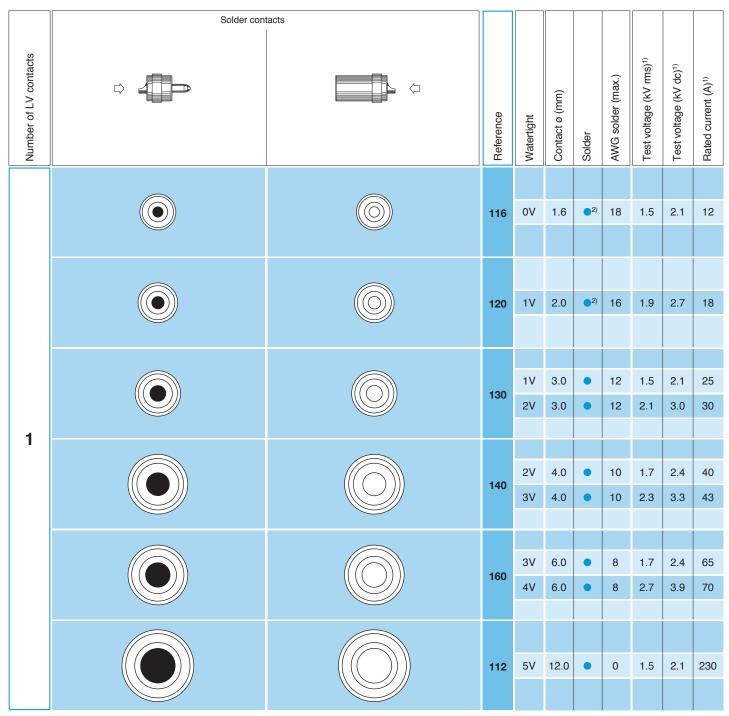
PVP Free socket with oversize cable collet 1)

Refe	rence		Dime	ension	s (mm	1)	
Model	Series	В	е	L	S1	S2	S3
PVP	1V	14.5	M16x1.0	58	10	12	12
PVP	2V	17.0	17.0 M20x1.0		14	15	15
PVP	3 V	22.0	M24x1.0	84	16	19	19
PVP	4 V	36.0	M30x1.0	109	22	30	32


Note: $^{1)}$ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 13).

5

PVP Free socket, cable collet and nut for fitting a bend relief 1)


Refe	rence	Dimensions (mm)								
Model	Series	В	8 e L S1			S2				
PVP	0V	10	M14x1.0	34.0	9	7				
PVP	1V	12	M16x1.0	46.0	10	9				
PVP	2V	16	M20x1.0	54.0	14	12				
PVP	3 V	19	M24x1.0	64.0	16	15				
PVP	4 V	24	M30x1.0	75.5	22	19				

Note: $^{1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog).

Unipole

Note: 1) see calculation method, caution and suggested standard. 2) also available with inversed contacts: plug = female, socket = male.

• First choice alternative — Special order alternative

Coaxial, Triaxial, Mixed

A wide choice of those types is available, please consult us.

Multipole

	Solder o	contacts					Cor	ntact pe			AWG											
contacts											Cri	mp	' rms) ^{1) 2)}	' dc) ^{1) 2)}	A) ¹⁾							
fLV o	Crimp c	ontacts	o o		(mm)			ight)	(M)	ax.)			ge (k\	ge (k\	rent (4							
Number of LV contacts	\Rightarrow		Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV ms) ^{1) 2)}	Test voltage (kV dc) ^{1) 2)}	Rated current (A)1)							
2				0V	0.9	•	•	•	•	22	32	20	1.1	1.6	10 ³⁾							
_				1V	1.3	•	•	•	•	20	26	18	1.2	1.8	15 ³⁾							
	1	10	302	2V	1.6	•	0	0	0	18	22	14	1.7	2.4	204)							
	2	2	302	3V	2.0	•		0		16			3.0	4.2	23							
				4V	4.0	•		0		10			2.1	3.0	35							
				5V	6.0	•				8			3.7	5.2	50							
3					0V	0.7	•	0	•	•	26	32	22	1.0	1.5	73)						
				1V	0.9	•	0	•	•	22	32	20	1.2	1.8	103)							
	2 • 1			303	2V	1.3	•	0	•	0	20	26	18	1.5	2.1	15 ⁴⁾						
				000	3V	2.0	•		0		16			1.5	2.1	20						
					4V	3.0	•		0		12			2.1	3.0	25						
				5V	1x6.0 2x4.0	•				8 10			3.7	5.2	50 35							
4				0V	0.7	•	•	•	•	26	32	22	1.0	1.5	7 3)							
_											1V	0.9	•	•	•	•	22	32	20	1.2	1.8	103)
	2 0 1				304	2V	1.3	•	0	•	•	20	26	18	1.7	2.4	15 ⁴⁾					
	30 04				4 • 3	004	3V	2.0	•		0		16			1.5	2.1	18				
				4V	3.0	•		0		12			2.1	3.0	22							
				5V	4.0	•				10			3.7	5.2	35							
5		3					1V	2x0.9 3x0.7	•	0	•	•	22 26	32	20 22	1.5	2.1	10 ³⁾ 7 ³⁾				
	3 • 2			2V	1.3	•	0	•	•	20	26	18	1.5	2.1	13 ⁴⁾							
						(10 0 3) - 0 4	305	3V	2x2.0 3x1.3	•		0		16 20			1.5	2.1	18 14			
	5			4V	2x3.0 3x2.0	•		0		12 16			2.1	3.0	22 16							
				5V	2x4.0 3x3.0	•				10 12			3.0	4.2	35 25							

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact or contact to shell.
3) rated current = 6A for socket with elbow (90°) contacts for printed circuit. 4) rated current = 12A for socket with elbow (90°) contacts for printed circuit.

O Special order alternative

9

Multipole

	Solder	contacts					Cor ty	ntact pe			AWG				
V contacts	Crimp o	contacts	_		(m			(1			Cri	mp	(kV ms) ^{1) 2)}	(KV dc) ¹⁾²⁾	t (A) ¹⁾
Number of LV contacts	\Rightarrow		Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV ms) ^{1) 2)}	Test voltage (kV dc) ^{1) 2)}	Rated current (A) ¹⁾
6				0V	0.5	•	0	•	0	28	32	28	0.9	1.3	2.5
				1V	0.7	•	0	•	•	26	32	22	1.2	1.7	73)
	3 0 2	10 0	306	2V	1.3	•	4)	•	•	20	26	18	1.5	2.1	12
	4006	6 6 5	300	3V	1.3	•		•		20			2.1	3.0	14
				4V	2.0	•		0		16			2.1	3.0	16
				5V	3.0	•				12			3.0	4.2	25
7															
_	4	200 4		2V	3x1.3 4x0.9	•	0	•	•	20 22	26 32	18 20	0.8	1.2	12 ³⁾ 9 ³⁾
	$\begin{pmatrix} \bullet & \bullet & \bullet \\ 5 & \bullet & \bullet & \bullet \\ \hline \end{pmatrix}$		307	3V	1.3	•		•		20			1.0	1.5	12
	60 7	7 •6		4V	3x2.0 4x1.3	•		0		16 20			2.1	3.0	16 13
8				2V	0.9		0		•	22	32	20	0.8	1.2	93)
	3 • • ²	2003		3V	1.3				0	20	OL.		1.0	1.5	10
	$\begin{pmatrix} 4 & \bullet & - & - & \bullet & 1 \\ \hline \bigcirc & - & - & - & \bullet & 1 \\ \hline \bigcirc & & \bigcirc & 8 \end{pmatrix}$	$\left(\left(\begin{array}{c}1\bigcirc\\ \bullet\end{array}\right) - \left(\begin{array}{c}4\\ \bullet\end{array}\right)\right)$	308	4V	1.3					20			2.7	3.9	13
	6 7	7 6		5V	3.0					12			2.1	3.0	22
					0.0								,	0.0	
9		32													
		20 ³ 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	309	4V	1.3			0		20			2.1	3.0	12
	70 0 9	9 9 7			1.0								,	0.0	
10	3 3 3	300													
	4 — 2 5 — 10 — — — — — — — — — — — — — — — — —	$\begin{bmatrix} 20 & 0 & 4 \\ 10 & 90 & 0 \\ \hline 1 & -10 & -5 \end{bmatrix}$	310	2V	0.9	•	0	•	•	22	32	20	0.8	1.2	73)
	10 °0 0	8 0 6		3V	1.3	•		•	•	20			1.0	1.5	9
10	4 • 3	30 4													
	$\begin{pmatrix} 5 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	(10 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	310	4V	1.3	•		0		20			2.1	3.0	11
	70 ₈ 0 9 10	10 9 9 8 7	2.0	5V	2.0	•				16			2.1	3.0	18

Note: 1) **see calculation method, caution and suggested standard.** 2) lowest measured value; contact to contact to shell. 3) rated current = 6A for socket with elbow (90°) contacts for printed circuit. 4) only for FFL model.

• First choice alternative — Special order alternative

Multipole

	Solder o	contacts					Cor ty	itact pe			AWG				
Number of LV contacts	Crimp €	contacts			mm)			ht)	()	(:)	Cri	mp	Test voltage (kV rms) ^{1) 2)}	Test voltage (kV dc) ^{1) 2)}	int (A) ¹⁾
Number of	\Rightarrow	*	Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage	Test voltage	Rated current (A) ¹⁾
12	2001	10-02													
	(6 - 3) (10 - 0 - 7) (20 - 11)		312	3V	0.9	•		•	•	22			1.5	2.1	8
12		0 ³ 0 4													
			312	4V	1.3	•		0		20			2.1	3.0	9
12															
			312	5V	2.0	•				16			2.1	3.0	18
13		10-0-03 40-0-0-7	313	3V	0.9					22			1.5	2.1	8
		12 13													
14	3	10-0-03													
	(7 4 4) (10 0 0 0 8) (14 0 0 0 12)	(A)	314	3V	0.9	•		•	•	22			1.5	2.1	7
14	(4 • ° • 2	20 ³ 0 4													
		10 110 0120 10 110 0120 10 14	314	4V	1.3	•		0		20			2.1	3.0	9
14		000													
			314	5V	2X3.0 12X2.0	•				12 16			1.8	2.4	20 15
	nu nu	N. C.													

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact to shell.

• First choice alternative Special order alternative

11

Multipole

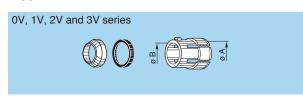
	Solder (Cor ty	ntact pe			AWG				
Number of LV contacts			_								Cri	mp	Test voltage (kV ms) ^{1) 2)}	Test voltage (kV dc) ^{1) 2)}	A) ¹⁾
r of LV	Crimp o		ce	jht	ww) ø			raight)	(woq	max.)			tage (k'	tage (k	urrent (
Numbe		+	Reference	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test vo	Test vo	Rated current (A) ¹⁾
16		0-0-0		0)/	0.0					00			1.0	4.5	7
			316	3V 4V	0.9	•			•	22			1.0	3.0	7
	16 13	13 16			0.0								2.1	0.0	,
16		³ O ⁴ O s													
			316	5V	2.0	•				16			1.8	2.4	15
	0000	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
18															
10		0-0-0 5-0-0-0 10-0-0	318	3V	0.9	•		•	0	22			1.0	1.5	6
	0180-0-150	15 18	0.0	4V	0.9	•		0		22			2.1	3.0	7
18		000000			2x3.0					12					10
		18 010 010 010 010 010 010 010 010 010 0	318	5V	16x1.6	•				18			1.8	2.4	18 11
20	\$ 3 1 4	40-0-0 s													
			320	4V		0.9	•		0		22		2.1	3.0	7
	20 18	18 20													
20	(600)	10000h													
	$\begin{pmatrix} \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$	$\begin{pmatrix} \begin{pmatrix} O & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} O & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	320	5V		1.6	•				18		1.8	2.4	11
	(Q.o.o.9)	\(\sum_{1}\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\te													
22		220													
	(110-0-127) (010-0-0-127)	$\begin{pmatrix} \begin{pmatrix} 3 & - & - & - & & & & \\ 2 & - & - & - & & & & \\ \hline \end{pmatrix} & \begin{pmatrix} 2 & - & - & & & & \\ 2 & - & - & & & & \\ \hline \end{pmatrix} & \begin{pmatrix} 2 & - & & & & \\ 2 & - & & & & & \\ \hline \end{pmatrix} & \begin{pmatrix} 2 & - & & & & \\ 2 & - & & & & \\ \hline \end{pmatrix}$	322	4V	0.9	•		0		22			2.1	3.0	7
	22 21	21 22 21													

Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact to shell.

• First choice alternative Special order alternative

Multipole

	Solder o	contacts					Cor	ntact pe			AWG				
Number of LV contacts											Cri	mp	Test voltage (kV mns) ^{1) 2)}	Test voltage (kV dc) ^{1) 2)}	A) ¹⁾
r of LV	Crimp c	ontacts	ээс	ght	Contact ø (mm)			raight)	(woq	max.)			Itage (K	tage (k	Rated current (A) ¹⁾
Numbe			Reference	Watertight	Contact	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test vo	Test vo	Rated c
22		20000													
			322	5V	2x3.0 20x1.6	•				12 18			1.8	2.4	16 9
24		0-20						_							
	(12 8) (27 0.30)		324	4V 5V	0.9	•				18			2.1	3.0	7 9
	21°0-0-0-18 24 22 18	18 22 21		30	1.0					10			2.1	5.5	9
30		(000000)													
	20-0-0-0-0 0-0-0-0-0 20-0-3		330	5V	1.3	•				20			1.8	2.4	8
36	**************************************	0000000 000000000000000000000000000000													
	0000000 0000000 0000000		336	5V	1.3	•				20			1.8	2.4	7
40		(00000)													
	000000000000000000000000000000000000000	(0000000000000000000000000000000000000	340	5V	1.3	•				20			1.2	1.8	7
44		0000000													
			344	5V	1.3	•				20			1.2	1.8	6
48	******	0000													
	00000000000000000000000000000000000000	(COCCOCCO)	348	5V	1.3	•				20			1.2	1.8	6


Note: 1) see calculation method, caution and suggested standard. 2) lowest measured value; contact to contact to shell.

• First choice alternative Special order alternative

C and K type collets

	Refe	rence	Coll	et ø	Cal	ble ø
	Туре	Code	ø A	øΒ	max.	min.
OV	С	35	4.2	4.2	3.5	3.1
OV	С	40	4.2	4.2	4.0	3.6
	С	45	5.2	5.2	4.5	4.1
	С	50	5.2	5.2	5.0	4.6
41/	С	35	4.2	-	3.5	3.1
1V	С	40	4.2	-	4.0	3.6
	С	45	5.2	_	4.5	4.1
	С	50	5.2	-	5.0	4.6
	С	55	6.2	6.2	5.5	5.1
	С	60	6.2	6.2	6.0	5.6
	С	65	7.2	6.7	6.5	6.1
	K	70	7.2	-	7.0	6.6
	K	75	8.2	8.2	7.5	7.1
	K	80	8.2	8.2	8.0	7.6
	K	85	9.2	8.6	8.5	8.1
01/	С	65	7.2	-	6.5	6.1
2V	С	70	7.2	-	7.0	6.6
	С	75	8.2	8.2	7.5	7.1
	С	80	8.2	8.2	8.0	7.6
	С	85	9.2	8.6	8.5	8.1
	K	90	9.2	-	9.0	8.6
	K	95	10.2	10.2	9.5	9.1
	K	10	10.2	10.2	10.0	9.6
	K	11	11.2	10.6	10.5	10.1

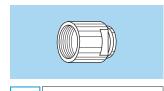
 $\textbf{Note:} \ \textbf{all dimensions are in millimetres}.$

	Refe	rence	Colle	et ø	Cal	ble ø
	Туре	Code	ø A	øΒ	max.	min.
21/	С	65	7.2	-	6.5	6.1
3V	С	70	7.2	-	7.0	6.6
	С	75	8.2	-	7.5	7.1
	С	80	8.2	-	8.0	7.6
	С	85	9.2	-	8.5	8.1
	С	90	9.2	_	9.0	8.6
	С	95	10.2	10.2	9.5	9.1
	С	10	10.2	10.2	10.0	9.6
	С	11	11.2	10.6	10.5	10.1
	K	11	12.3	-	12.0	10.6
	K	12	13.8	13.8	12.8	12.1
	K	13	13.8	13.8	13.5	12.9
	K	14	15.3	15.3	14.0	13.6
	K	15	15.3	15.3	15.0	14.1

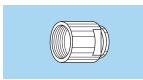
4V

C and K type collets

4V and 5V series

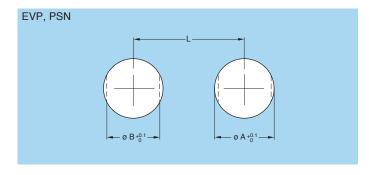

Refe	rence	Colle	et ø	Cal	ble ø
Туре	Code	ø A	øΒ	max.	min.
С	65	7.3	-	6.5	6.1
С	70	7.3	-	7.0	6.6
С	75	8.3	_	7.5	7.1
С	80	8.3	-	8.0	7.6
С	85	9.3	_	8.5	8.1
С	90	9.3	-	9.0	8.6
С	95	10.8	-	9.5	9.1
С	10	10.8	-	10.5	9.6
С	11	12.3	-	12.0	10.6
С	12	13.8	13.8	12.8	12.1
С	13	13.8	13.8	13.5	12.9
С	14	15.3	15.3	14.0	13.6
С	15	15.3	15.3	15.0	14.1
K	16	17.8	-	16.5	15.6
K	17	17.8	-	17.5	16.6
K	18	19.8	_	18.5	17.6
K	19	19.8	_	19.5	18.6
K	20	21.8	_	20.5	19.6
K	21	21.8	_	21.5	20.6
K	22	23.8	23.8	22.5	21.6
K	23	23.8	23.8	23.5	22.6

	Refe	rence	Colle	et ø	Cat	ole ø
	Туре	Code	ø A	øΒ	max.	min.
ΕV	С	14	15.8	_	14.5	13.6
5V	С	15	15.8	-	15.5	14.6
	С	16	17.8	-	16.5	15.6
	С	17	17.8	-	17.5	16.6
	С	18	19.8	-	18.5	17.6
	С	19	19.8	-	19.5	18.6
	С	20	21.8	-	20.5	19.6
	С	21	21.8	-	21.5	20.6
	С	22	23.8	23.8	22.5	21.6
	С	23	23.8	23.8	23.5	22.6



Bend relief for models with collet

	Ref.	Co	llet
	ď	Type	Code
OV	Z	С	35 to 50
41/	Z	С	35 to 65
1V	2	K	70 to 85
21/	7	С	65 to 85
2V	Z	K	90 to 10



	Ref.	Co	llet
	ď	Type	Code
21/	Z	С	65 to 10
3V		K	11 to 15
4V	Z	С	65 to 15

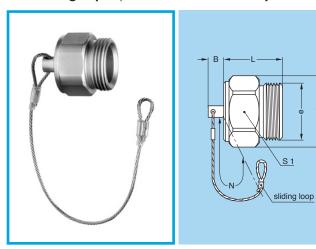
Note: The bend relief must be ordered separately (see pages 141 and 142 of the unipole/multipole catalog). All dimensions are in millimetres.

Panel cut-outs

Panel Cut-outs

Series	Dime	nsions	(mm)
Selles	Α	В	L
0V	14.1	12.6	19.0
1V	16.1	14.6	21.0
2V	20.2	18.6	25.5
3V	24.2	22.6	30.0
4V	30.2	28.6	37.0
5V	45.2	42.6	53.0

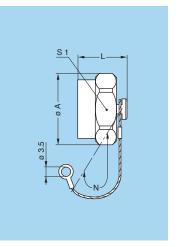
Mounting nuts torque


Component	Torque (Nm)									
Component	0V	1V	2V	3V	4V	5V				
Collet nut for F●● and P●●	0.7	0.8	2	3	5	8				
Mounting hex nut for sockets	5	7	9	12	17	22				
Coupling nut	0.7	0.8	2	3	5	8				

1N = 0.102 kg

Accessories

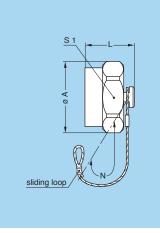
Plug caps (IP68 and resistance to hydrostatic pressure 30 bars)



Part number	Series	Dimensions (mm)						
Part number	Series	Α	В	е	L	N	S1	
BFA.0V.100.●AZ	0V	17.2	6	M14x1.0	12.5	85	16	
BFA.1V.100.●AZ	1V	19.3	6	M16x1.0	15.5	85	18	
BFA.2V.100.●AZ	2V	23.5	6	M20x1.0	17.5	85	22	
BFA.3V.100.●AZ	3V	27.8	6	M24x1.0	22.0	120	26	
BFA.4V.100.●AZ	4V	34.3	10	M30x1.0	22.5	120	32	
BFA.5V.100.●AZ	5V	50.0	10	M45x1.5	27.0	120	47	

- Body material: \bullet = N, nickel-plated brass (Ni 3 μ m) \bullet = S, stainless steel Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass

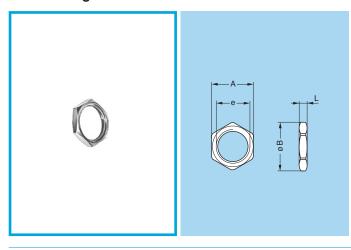
BRE Blanking caps for fixed sockets (This cap is only IP68 when installed)



Part number	Series	Dimensions (mm)						
	Series	Α	L	N	S1			
BRE.0V.200.●AV	0V	17.2	13.7	85	16			
BRE.1V.200.●AV	1V	19.3	13.7	85	18			
BRE.2V.200.●AV	2V	23.5	14.7	85	22			
BRE.3V.200.●AV	3V	27.8	14.7	120	26			
BRE.4V.200.●AV	4V	34.3	14.7	120	32			
BRE.5V.200.●AV	5V	50.0	16.2	120	47			

- Body material: \bullet = N, nickel-plated brass (Ni 3 μ m) \bullet = S, stainless steel Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass O-ring: FPM (Viton®)

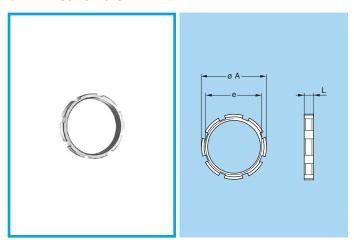
BRF Blanking caps for free sockets (This cap is only IP68 when installed)



Part number	Series	Dimensions (mm)					
r art number		Α	L	N	S1		
BRF.0V.200.●AV	0V	17.2	13.7	85	16		
BRF.1V.200.●AV	1V	19.3	13.7	85	18		
BRF.2V.200.●AV	2V	23.5	14.7	85	22		
BRF.3V.200.●AV	3V	27.8	14.7	120	26		
BRF.4V.200.●AV	4V	34.3	14.7	120	32		
BRF.5V.200.●AV	5V	50.0	16.2	120	47		

- Body material: = N, nickel-plated brass (Ni 3µm) = S, stainless steel Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass O-ring: FPM (Viton®)

GEA Hexagonal nuts

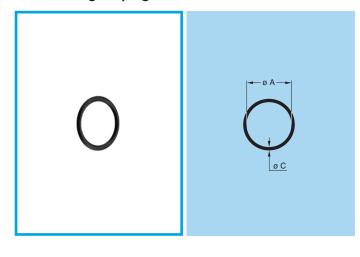

Part number	Series	Dimensions (mm)					
Part number	Series	Α	В	е	L		
GEA.0E.240.LN	0V	17	19.2	M14 x 1.00	2.5		
GEA.1E.240.LN	1V	19	21.5	M16 x 1.00	3.0		
GEA.2E.240.LN	2V	24	27.0	M20 x 1.00	4.0		
GEA.3E.240.LN	3V	30	34.0	M24 x 1.00	5.0		
GEA.4E.240.LN	4V	36	40.5	M30 x 1.00	7.0		

Note: to order this part separately, use the above part numbers. The last letters "LN» of the part number refer to the nut material and treatment. If a nut in stainless steel is desired, replace the last letters of the part number by «AZ».

- Material:

 Nickel-plated brass (3 μm)
 Stainless steel

GEB Round nuts


Part number	Series	Dimensions (mm)			
		Α	е	L	
GEB.5E.240.LN	5V	54	M45 X 1.5	8.0	

Note: to order this part separately, use the above part numbers. The last letters "LN" of the part number refer to the nut material and treatment. If a nut in stainless steel is desired, replace the last letters of the part number by "AZ".

- Material:

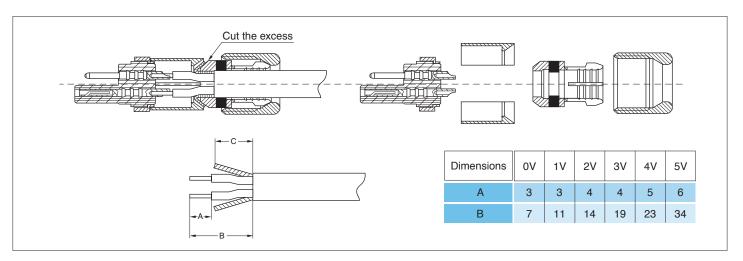
 Nickel-plated brass (3 μm)
 Stainless steel

GDA O-ring for plug

Part number	Series	Dim. (mm)		
Part number	Series	Α	С	
GDA.99.080.100VK	0V	8.0	1.0	
GDA.99.100.100VK	1V	10.0	1.0	
GDA.99.130.150VK	2V	13.0	1.5	
GDA.99.165.150VK	3V	16.5	1.5	
GDA.99.210.200VK	4V	21.0	2.0	
GDA.99.330.250VK	5V	33.0	2.5	

Material: FPM (Viton®)

Cable assembly


Assembly instructions

In order to ensure the sealing of plugs and sockets on the cable side, it is imperatively necessary to complete their assembly by realizing it with an adapted technique.

We recommend the fitting of an heatshrink boot with inner melting coating of type ATUM (manufactured by the RAYCHEM company) or similar.

This heatshrink boot is not provided with the connector.

For multiconductors cables, the assembly instructions are the followings:

- 1) Preparation and stripping of cable (see above).
- 2) Slide the heatshrink boot over the cable; types and dimensions to have are:

Series	0V	1V	2V	3V	4V	5V
Type of heatshrink boot	12/3-0	12/3-0	19/6-0	19/6-0	24/6-0	40/13-0
Length of the boot	30	35	40	45	50	65
Oversize collet	-	16/4-0	19/6-0	24/8-0	40/13-0	-
Length of the boot for oversize collet	-	-	70	_	-	_

- 3) After having soldered the conductors on the contacts of the plug/socket insulator, bring the earthing cone against the centre-piece. Cut the excess of screen.
- 4) Locate the insulator, the centre-piece, the earthing cone, the gland, the compression ring and the collet in the plug/socket shell.
- 5) Screw the collet nut at the recommended torque value.
- 6) Remove all grease left on plug/socket shells with acetone.
- 7) Place the heatshrink boot of the correct dimensions onto the rear end of the plug/socket against the coupling nut.
- 8) Heat the heatshrink boot until the melting coating totally melts and adheres perfectly onto the cable jacket.

Product safety notice

PLEASE READ AND FOLLOW ALL INSTUCTIONS CAREFULLY AND CONSULT ALL RELEVENT NATIONAL AND INTERNATIONAL SAFETY REGULATIONS FOR YOUR APPLICATION.
IMPROPER HANDLING, CABLE ASSEMBLY, OR WRONG USE OF CONNECTORS CAN RESULT IN HAZARDOUS SITUATIONS.

1. SHOCK AND FIRE HAZARD

Incorrect wiring, the use of damaged components, presence of foreign objects (such as metal debris), and / or residue (such as cleaning fluids), can result in short circuits, overheating, and / or risk of electric shock.

Mated components should never be disconnected while live as this may result in an exposed electric arc and local overheating, resulting in possible damage to components.

2. HANDLING

Connectors and their components should be visually inspected for damage prior to installation and assembly. Suspect components should be rejected or returned to the factory for verification.

Connector assembly and installation should only be carried out by properly trained personnel. Proper tools must be used

Connector assembly and installation should only be carried out by properly trained personnel. Proper tools must be used during installation and / or assembly in order to obtain safe and reliable performance.

3. USE

Connectors with exposed contacts should never be live (or on the current supply side of a circuit). Under general conditions voltages above 30 VAC and 42 VDC are considered hazardous and proper measures should be taken to eliminate all risk of transmission of such voltages to any exposed metal part of the connector.

4. TEST AND OPERATING VOLTAGES

The maximum admissible operating voltage depends upon the national or international standards in force for the application in question. Air and creepage distances impact the operating voltage; reference values are indicated in the catalog however these may be influenced by PC board design and / or wiring harnesses.

The test voltage indicated in the catalog is 75% of the mean breakdown voltage; the test is applied at 500 V/s and the test duration is 1 minute.

5. CE MARKING CE

CE marking **(** € means that the appliance or equipment bearing it complies with the protection requirements of one or several European safety directives.

CE marking (€ applies to complete products or equipment, but not to electromechanical components, such as connectors.

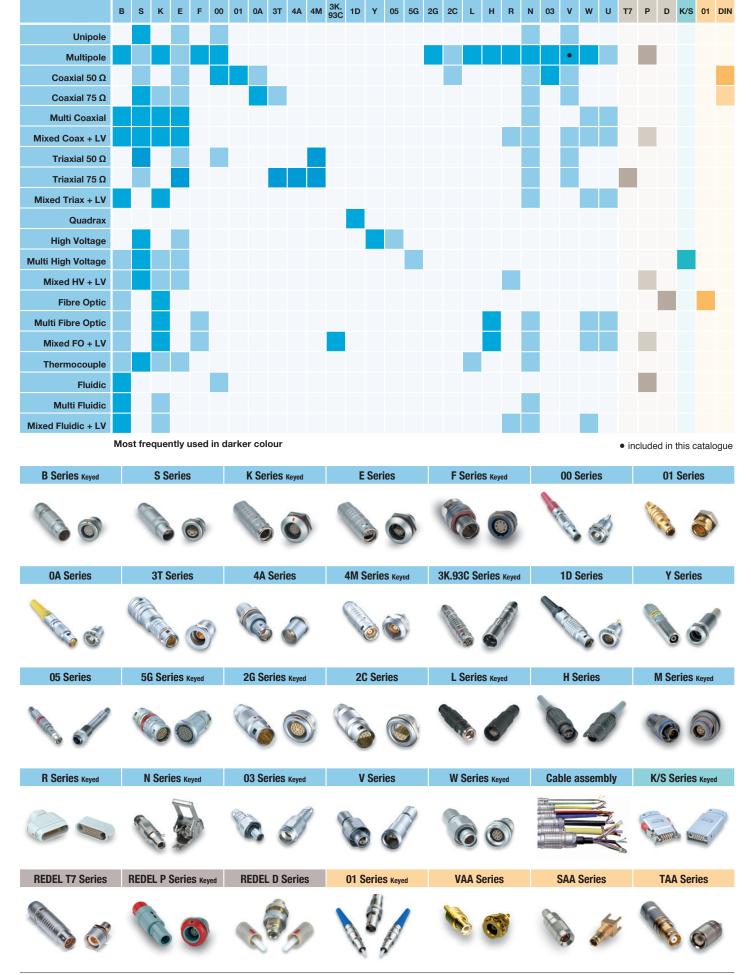
6. PRODUCT IMPROVEMENTS

The LEMO Group reserves the right to modify and improve to our products or specifications without providing prior notification.

7. 🗥 WARNING (Prop 65 State of California)

This product may contain one or more substances or chemicals known to the state of California to cause cancer.

Disclaimers


LEMO works constantly to improve the quality of its products; the information and illustrations figuring in this document may therefore vary and are not binding. In any case, LEMO makes no specific warranty of merchantability, fitness for a particular purpose, third party components as such or included in assembly, non-infringement, title, accuracy, completeness, or security. The user is fully responsible for his products and applications using LEMO component.

In no event shall LEMO, its affiliates, officers, agents or employees be liable for any incidental, indirect, special or consequential damages in connection with the products or services provided by LEMO, including (without limitation) loss of profits or revenues, interruption of business, loss of use of the products or any associated equipment, materials, components or products, damages to associated equipment or in combination with other components, materials.

Reproduction of significant portions of LEMO information in LEMO data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. LEMO is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

LEMO complete product range

LEMO HEADQUARTERS

SWITZERLAND LEMO SA
Chemin des Champs-Courbes 28 - P.O. Box 194 - CH-1024 Ecublens Tel. (+41 21) 695 16 00 - Fax (+41 21) 695 16 02 - e-mail: info@lemo.com

LEMO SUBSIDIARIES

AUSTRIA LEMO Elektronik GesmbH Lemböckgasse 49/E6-3 1230 Wien Tel: (+43 1) 914 23 20 0 Fax:(+43 1) 914 23 20 11 sales@lemo.at

BRAZIL LEMO Latin America Ltda Av. José Rocha Bonfim, 214 Salas 224 / 225 Condomínio Praça Capital Ed. Chicago Campinas / SP - Brasil 13080-650 Tel: +55 (11) 98689 4736 info-la@lemo.com

CANADA LEMO Canada Inc 44 East Beaver Creek Road, unit 20 Richmond Hill, Ontario L4B 1G8 Tel: (+1 905) 889 56 78 Fax: (+1 905) 889 49 70 info-canada@lemo.com

CHINA / HONG KONG LEMO Electronics (Shanghai) Co., Ltd First Floor, Block E, 18 Jindian Road, Pudong Shanghai, China, 201206 Tel: (+86 21) 5899 7721 Fax: (+86 21) 5899 7727 cn.sales@lemo.com

DENMARK LEMO Denmark A/S Nvbrovei 97 Nybrovej 97 2820 Gentofte Tel: (+45) 45 20 44 00 Fax: (+45) 45 20 44 01 info-dk@lemo.com

FRANCE LEMO France Sàrl 24/28 Avenue Graham Bell Bâtiment Balthus 4 Bussy Saint Georges 77607 Marne la Vallée Cedex 3 Tel: (+33 1) 60 94 60 94 Fax: (+33 1) 60 94 60 90 info-fr@lemo.com

GERMANY LEMO Elektronik GmbH Hanns-Schwindt-Str. 6 81829 München Tel: (+49 89) 42 77 03 Fax: (+49 89) 420 21 92 info@lemo.de

HUNGARY REDEL Elektronika Kft Nagysándor József u. 6-12 1201 Budapest Tel: (+36 1) 421 47 10 Fax: (+36 1) 421 47 57 info-hu@lemo.com

ITALY LEMO Italia srl Viale Lunigiana 25 20125 Milano Tel: (+39 02) 66 71 10 46 Fax: (+39 02) 66 71 10 66 sales.it@lemo.com

JAPAN LEMO Japan Ltd 2-7-22, Mita, Minato-ku, Tokyo, 108-0073 Tel: (+81 3) 54 46 55 10 Fax: (+81 3) 54 46 55 11 lemoinfo@lemo.co.jp

MIDDLE EAST LEMO Middle East Gen. Trad. LLC Concorde Tower 6th Floor, Dubai Media City, P.O. Box 126732 Dubai, United Arab Emirates Tel: +971 55 222 36 77 info-me@lemo.com

NETHERLANDS / BELGIUM LEMO Connectors Benelux De Trompet 1060 1967 DA Heemskerk Tel. (+31) 251 25 78 20 Fax (+31) 251 25 78 21 info@lemo.nl

NORWAY / ICELAND LEMO Norway A/S Soerumsandvegen 69, 1920 Soerumsand Tel: (+47) 22 91 70 40 Fax: (+47) 22 91 70 41 info-no@lemo.com

SINGAPORE LEMO Asia Pte Ltd 4 Leng Kee Road, #06-09 SiS Building Singapore 159088 Tel: (+65) 6476 0672 Fax: (+65) 6474 0672 sg.sales@lemo.com

SPAIN / PORTUGAL IBERLEMO SAU Brasil, 45, 08402 Granollers Barcelona Tel: (+34 93) 860 44 20 Fax: (+34 93) 879 10 77 info-es@lemo.com

SWEDEN / FINLAND LEMO Nordic AB Gunnebogatan 30, Box 8201 163 08 Spånga Tel: (+46 8) 635 60 60 Fax: (+46 8) 635 60 61 info-se@lemo.com

SWITZERLAND LEMO Verkauf AG Grundstrasse 22 B, 6343 Rotkreuz Tel: (+41 41) 790 49 40 ch.sales@lemo.com

UNITED KINGDOM LEMO UK Ltd 12-20 North Street, Worthing, West Sussex, BN11 1DU Tel: (+44 1903) 23 45 43 lemouk@lemo.com

USA LEMO USA Inc P.O. Box 2408 Rohnert Park, CA 94927-2408 Tel: (+1 707) 578 88 11 (+1 800) 444 53 66 Fax:(+1 707) 578 08 69 info-US@lemo.com

LEMO DISTRIBUTORS

ARGENTINA, AUSTRALIA, BRAZIL, CHILE, COLOMBIA, CZECH REPUBLIC, GREECE, INDIA, ISRAEL, NEW ZEALAND, PERU, POLAND, RUSSIA, SOUTH AFRICA, SOUTH KOREA, TAIWAN, TURKEY, UKRAINE