

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

December 2007

FAN7535 PFC & Ballast Control IC

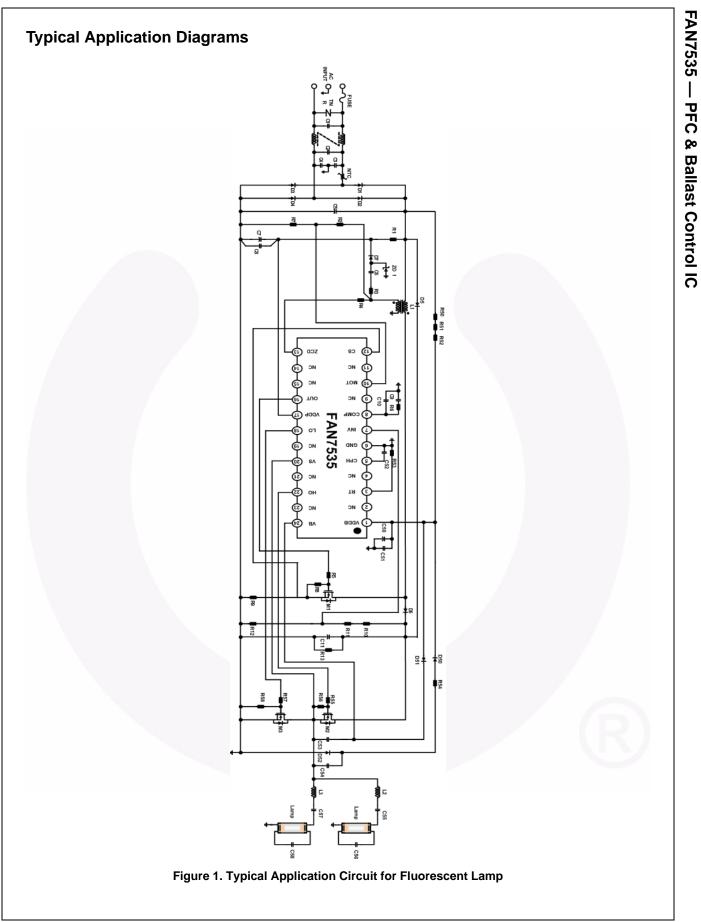
Features

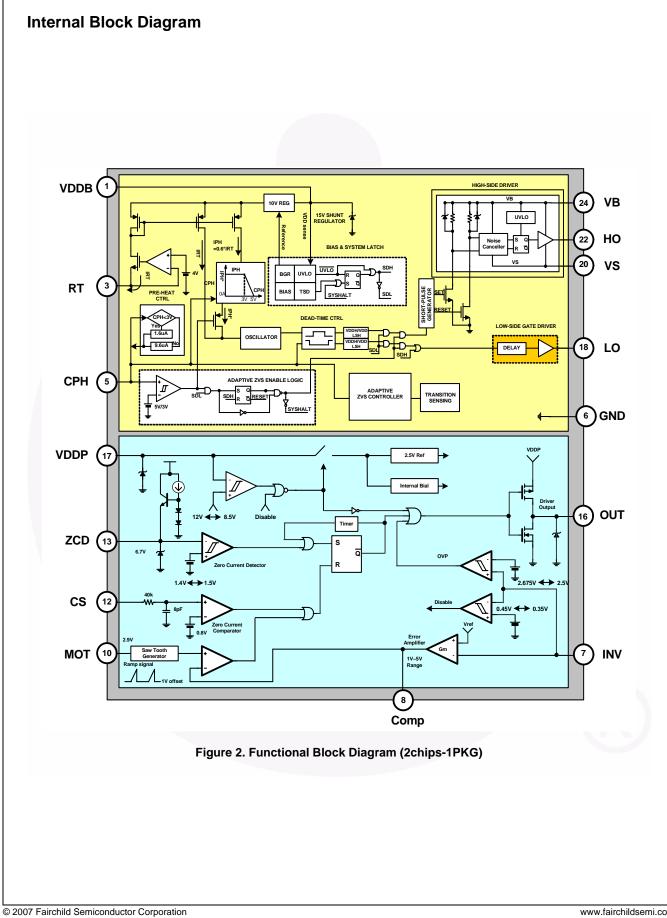
- PFC, Ballast Control, and Half-Bridge Driver in One IC
- PFC Driver Current Capability: +500mA/-800mA
- Critical Conduction Mode Control Type PFC
- Internal Clamping Zener Diode (PFC): 23V
- Under-Voltage Lockout with 3.5V of Hysteresis (PFC)
- Internal Clamping Zener Diode (Ballast): 15V
- Lower di/dt Gate Driver for Better Noise Immunity
- Under-Voltage Lockout with 1.8V Hysteresis (Ballast)
- Ballast Driver Current Capability: +350mA/-650mA
- Programmable Preheat Time & Frequency
- Programmable Run Frequency
- Programmable Ignition Sweep Time
- Internal Active ZVS Control
- Internal Protection Function (Latch Mode)

Applications

Fluorescent Lamp Ballast

Description


FAN7535 provides simple, high-performance, active power factor correction (PFC), and ballast control. The FAN7535 is optimized for all kinds of fluorescent lamps, which require minimum board area and reduced external components. The FAN7535 PFC control block to reduce the input current THD lower than conventional CRM boost PFC methods. An innovative Active Zero Voltage Switching (AZVS) block reduces the swtiching power loss. A dedicated timing section in the FAN7535 allows the user set the necessary parameters for proper lamp preheat and ignition.



Ordering Information

Part Number	Package	Operating Temperature Range	Packing Method
FAN7535M	24-SOP	-25°C ~ 125°C	Tube
FAN7535MX	24-30P	-25 C ~ 125 C	Tape & Reel

All packages are lead free per JEDEC: J-STD-020B standard.

Pin Configuration

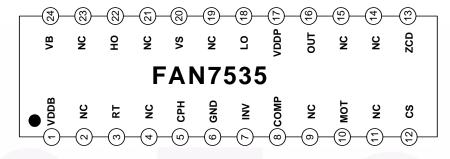


Figure 3. Pin Configuration (Top View)

Pin Definitions

Pin #	Name	Description	
1	VDDB	Supply voltage for ballast part	
2	NC	No connection	
3	RT	Oscillator frequency set resistor	
4	NC	No connection	
5	СРН	Preheating time set capacitor	
6	GND	Ground for ballast part & PFC part	
7	INV	Inverting input of the error amplifier	
8	COMP	Output of the transconductance error amplifier	
9	NC	No connection	
10	MOT	Set the slope of the internal ramp	
11	NC	No connection	
12	CS	Input of the over-current protection comparator	
13	ZCD	Input of the zero current detection block	
14	NC	No connection	
15	NC	No connection	
16	OUT	Gate driver output	
17	VDDP	Supply voltage for PFC block	
18	LO	Low-side output	
19	NC	No connection	
20	VS	High-side floating supply return	
21	NC	No connection	
22	НО	High-side output	
23	NC	No connection	
24	VB	High-side floating supply	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.

The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit
PFC PAR	T				
V _{DDP}	Supply Voltage		Vz		V
I _{OH} , I _{OL}	Peak Drive Output Current	-800		+500	
ICLAMP	Driver Output Clamping Diodes $V_0 > V_{CC}$ or $V_0 < -0.3V$		±10		mA
IDET	Detector Clamping Diodes		±10		
V _{IN}	Error Amplifier, MOT, CS Input Voltages	-0.3		6.0	V
BALLAST	PART				
VB	High-side Floating Supply	-0.3		625.0	
VS	High-side floating supply return	-0.3		600.0	V
V _{IN}	RT, CPH Pins Input Voltage	-0.3		8.0	v
V _{CL}	Clamping Voltage		V _{CL}		
I _{CL}	Clamping Current Level		25		mA
dV _S /dt	Allowable Offset Voltage Slew Rate			50	V/ns
Common					
T _{OPR}	Operating Temperature Range	-25		+125	°C
T _{STG}	Storage Temperature Range	-65		+150	Ĵ
PD	Total Power Dissipation		1.5		W
θ_{JA}	Thermal Resistance (Junction-to-Air)			83	°C/W

Caution:

Do not supply a low-impedance voltage source to the internal clamping Zener diode between the GND and the VDDB and VDDP pins of this device. Use a common supply between the two ICs (PFC, Ballast) only under careful attention.

Ţ
5
7
5 G
Ğ
I
P
Ţ
\mathbf{O}
ζο
Ω
all
las
ŧ
C
Q
₹
ò
Ξ
C

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit	
PFC PART ⁽¹	1)						
UNDER-VOL	TAGE LOCKOUT SECTION						
V _{th(start)}	Start Threshold Voltage	V _{DDP} Increasing	11	12	13		
V _{th(stop)}	Stop Threshold Voltage	V _{DDP} Decreasing	7.5	8.5	9.5	V	
H _{Y(UVLO)}	UVLO Hysteresis		3.0	3.5	4.0	v	
Vz	Zener Voltage	I _{DDP} = 20mA	20	22	24		
SUPPLY CU	RRENT SECTION					•	
I _{st}	Start-up Supply Current	$V_{DDP} = V_{TH(START)} - 0.2V$		40	70	mA	
I _{DDP}	Operating Supply Current	Output not switching		1.5	3.0		
I _{DDP(dyn)}	Dynamic Operating Supply Current	50kHz, $C_L = 1nF$		2.5	4.0	mA	
I _{DD(dis)}	Operating Current at Disable	$V_{INV} = 0V$	20	65	95	mA	
ERROR AMI	PLIFIER SECTION						
V _{ref1}	Voltage Feedback Input Threshold1	T _A = 25°C	2.465	2.500	2.535	V	
DV _{ref1}	Line Regulation	$14V \le V_{DDP} \le 20V$		0.1	10.0		
DV _{ref3} ⁽¹⁾	Temperature Stability of V _{REF}			20		mV	
Ib _(ea)	Input Bias Current	$1V \le V_{inv} \le 4V$	-0.5		0.5		
Isource	Output Source Current	$V_{inv} = V_{ref1} - 0.1V$		-12		mA	
I _{sink}	Output Sink Current	$V_{inv} = V_{ref1} + 0.1V$		12			
V _{eao(H)}	Output Upper Clamp Voltage	$V_{inv} = V_{ref1} - 0.1V$	5.4	6.0	6.6	V	
V _{eao(Z)}	Zero Duty Cycle Output Voltage		0.9	1.0	1.1		
g _m ⁽²⁾	Transconductance		90	115	140	µmho	
MAXIMUM C	DN-TIME SECTION						
V _{MOT}	Maximum On-Time Voltage	R _{MOT} = 40.5Ω	2.784	2.900	3.016	V	
T _{ON-MAX}	Maximum On-Time Programming	R _{MOT} = 40.5Ω,T _A = 25°C	19	24	29	μs	
CURRENT-S	ENSE SECTION						
V _{CS(LIMIT)}	Current Sense Input Threshold Voltage Limit		0.7	0.8	0.9	V	
lb _(cs)	Input Bias Current	$0V \le V_{CS} \le 1V$	-1.0	-0.1	1.0	mA	
Td _(cs) ⁽¹⁾	Current Sense Delay to Output			350	500	ns	

Notes:

1. Please refer to the FAN7529 datasheet and AN-6026 application note for more detailed information. Available on Fairchild's website at:

Datasheet: http://www.fairchildsemi.com/ds/FA%2FFAN7529.pdf

Application Note: http://www.fairchildsemi.com/an/AN/AN-6026.pdf

2. This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

 V_{DDP} = 14V, T_A = 25°C, unless otherwise specified.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit	
ZERO CUR	RENT DETECT SECTION						
V _{th(ZCD)} ⁽³⁾	Input Voltage Threshold		1.35	1.50	1.65		
HY _(ZCD) ⁽³⁾	Detect Hysteresis		0.05	0.10	0.15	v	
V _{clamp(h)}	Input High Clamp Voltage	I _{DET} = 3mA	6.0	6.7	7.4	7.4	
V _{clamp(I)}	Input Low Clamp Voltage	I _{DET} = -3mA	0	0.65	1.00		
Ib _(ZCD)	Input Bias Current	$1V \le V_{ZCD} \le 5V$	-1.0	-0.1	1.0	mA	
I _{source(ZCD)} ⁽³⁾	Source Current Capability	$T_A = 25^{\circ}C$			-10		
I _{sink(ZCD)} ⁽³⁾	Sink Current Capability	$T_A = 25^{\circ}C$			10	mA	
T _{DEAD} ⁽³⁾	Maximum Delay, ZCD to Output Turn-on		100		200		
OUTPUT SE	ECTION						
V _{oh}	Output Voltage High	I _O = -100mA, T _A = 25°C	9.2	11.0	12.8		
V _{ol}	Output Voltage Low	I _O = 100mA, T _A = 25°C		1.0	2.5		
T _r ⁽³⁾	Rising Time	C _I = 1nF		50	100	20	
T _f ⁽³⁾	Falling Time	C _I = 1nF		50	100	ns	
V _{O(MAX)}	Maximum Output Voltage	$V_{DDP} = 20V, I_{O} = 100mA$	11.5	13.0	14.5	v	
V _{O(UVLO)}	Output Voltage with UVLO Activated	$V_{DDP} = 5V, I_{O} = 100mA$			1	v	
RESTART T	IMER SECTION						
t _{d(rst)}	Restart Time Delay		50	150	300	ms	
OVER-VOLT	AGE PROTECTION SECTION						
V _{OVP}	OVP Threshold Voltage	$T_A = 25^{\circ}C$	2.620	2.675	2.730	V	
HY _(OVP)	OVP Hysteresis	$T_A = 25^{\circ}C$	0.120	0.175	0.230	V	
ENABLE SE	CTION						
V _{th(en)}	Enable Threshold Voltage		0.40	0.45	0.50	V	
HY _(en)	Enable Hysteresis		0.05	0.10	0.15	V	

Note:

3. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (Continued)

 $V_{BIAS}\,(V_{DDB},\,V_{BS})$ = 14.0V, T_A = 25°C, unless otherwise specified.

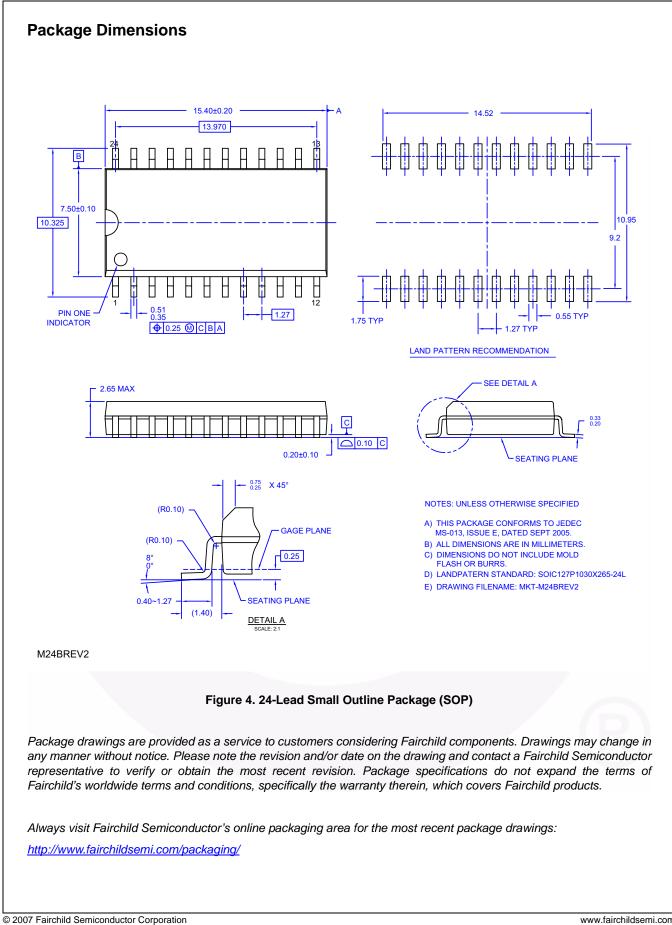
Symbol	Characteristics	Condition	Min.	Тур.	Max.	Unit
BALLAST	PART ⁽⁴⁾					
Supply Vo	Itage Section					
V _{DDTH(ST+)}	V _{DDB} UVLO Positive Going Threshold	V _{DDB} Increasing	12.4	13.4	14.4	
V _{DDTH(ST-)}	V _{DDB} UVLO Negative Going Threshold	V _{DDB} Decreasing	10.8	11.6	12.4	v
V _{DDHY(ST)}	V _{DDB} -side UVLO Hysteresis			1.8		V
V _{CL}	Supply Clamping Voltage	I _{DDB} = 10mA	14.8	15.2		
I _{ST}	Start-up Supply Current	V _{DDB} = 12V		150		μΑ
I _{DDB(dyn)}	Dynamic Operating Supply Current	50kHz, C _L = 1nF		3.2		mA
High-Side	Supply Section (V _B -V _S)					
V _{HSTH(ST+)}	High-side UVLO Positive Going Threshold	V _{BS} Increasing	8.5	9.2	10.0	
V _{HSTH(ST-)}	High-side UVLO Negative Going Threshold	V _{BS} Decreasing	7.9	8.6	9.5	V
V _{HSHY(ST)}	High-side UVLO Hysteresis			0.6		
I _{HST}	High-side Quiescent Supply Current	V _{BS} = 14V		50		μA
I _{HD}	High-side Dynamic Operating Supply Current	50kHz, C _L = 1nF		1		mA
I _{LK}	Offset Supply Leakage Current	$V_{B} = V_{S} = 600V$			45	μA
Oscillator	Section			1		
V _{MPH}	CPH Pin Preheating Voltage Range		2.5	3.0	3.5	V
I _{PH}	CPH Pin Charging Current During Preheating	V _{CPH} = 1V	1.25	2.00	2.85	μA
I _{IG}	CPH Pin Charging Current During Ignition	$V_{CPH} = 4V$	8	12	16	
V _{MO}	CPH Pin Voltage Level at Running Mode			7.0		V
f _{PRE}	Preheating Frequency	$R_T = 80 k\Omega$, $V_{CPH} = 2V$	72	85	98	kHz
fosc	Running Frequency	R _T = 80kΩ	48.2	53.0	57.8	kHz
DT _{MAX}	Maximum Dead Time	V _{CPH} = 1V, V _S = GND in Preheat Mode		3.1		μs
DT _{MIN}	Minimum Dead Time	V _{CPH} = 6V, V _S = GND in Run Mode		1.0		μs
Output See	ction					
I _{OH+}	High-side Driver Sourcing Current	PW = 10μs	250	350		
I _{OH-}	High-side Driver Sinking Current	PW = 10μs	500	650		mA
I _{OL+}	Low-side Driver Sourcing Current	PW = 10μs	250	350		mA
I _{OL-}	Low-side Driver Sink Current	PW = 10μs	500	650		
t _{HOR}	High-side Driver Turn-on Rising Time	C _L = 1nF, V _{BS} = 15V		45		
t _{HOL}	High-side Driver Turn-off Rising Time	C _L = 1nF, V _{BS} = 15V		25		
t _{LOR}	Low-side Driver Turn-on Rising Time	C _L = 1nF, V _{BS} = 15V		45		ns
t _{LOL}	Low-side Driver Turn-off Rising Time	C _L = 1nF, V _{BS} = 15V		25		
$V_S^{(5)}$	Maximum Negative V _S Swing Range for Signal Propagation to High-side Output			-9.8		V

Electrical Characteristics (Continued)

 $V_{BIAS}\,(V_{DDB},\,V_{BS})$ = 14.0V, T_A = 25°C, unless otherwise specified.

Symbol	Characteristics	Condition	Min.	Тур.	Max.	Unit	
Protection Section							
V _{CPHSD}	Shutdown Voltage	V _{RT} = 0 After Run Mode	2.6			V	
I _{SD}	Shutdown Current	V _{RT} = 0 Aller Kull Mode		250	450	μΑ	
TSD ⁽⁵⁾	Thermal Shutdown			165		°C	

Notes:


4. Please refer to the FAN7711 datasheet for more detailed information. Available on Fairchild's website at: <u>Datasheet: http://www.fairchildsemi.com/ds/FA%2FFAN7711.pdf</u>

5. This parameter, although guaranteed, is not 100% tested in production.

FAN75
i35 F
PFC & I
Ballast (
Control
ົດ

Part	Value	Note	Part	Value	Note
	Resist	or	C55	15nF/630V	Miller Capacitor
R1	330kΩ	1/2W	C56	2.7nF/1kV	Miller Capacitor
R2	750kΩ	1/4W	C57	15nF/630V	Miller Capacitor
R3	100Ω	1/2W	C58 2.7nF/1kV Miller C		Miller Capacitor
R4	20kΩ	1/4W		Diod	9
R5	47Ω	1/4W	D1	1N4007	1kV,1A
R6	10kΩ	1/4W	D2	1N4007	1kV,1A
R7	50kΩ	1/4W	D3	1N4007	1kV,1A
R8	47kΩ	1/4W	D4	1N4007	1kV,1A
R9	0.3Ω	1W	D5	UF4007	Ultra Fast,1kV,1A
R10	1MΩ	1/4W	D6	UF4007	Ultra Fast,1kV,1A
R11	1MΩ	1/4W	D7	1N4148	100V,1A
R12	12.6kΩ	1/4W,1%	D8	1N4148	100V,1A
R13	220k Ω	2W	D50	UF4007	Ultra Fast,1kV,1A
R50	150kΩ	1/4W	D51	UF4007	Ultra Fast,1kV,1A
R51	150kΩ	1/4W	D52	UF4007	Ultra Fast,1kV,1A
R52	150kΩ	1/4W	ZD1	IN4746A	Zener 18V, 1W
R53	90kΩ	1/4W,1%	MOSFET		
R54	10Ω	1/4W	M1	FQPF5N60C	500V,6A
R55	47Ω	1/4W	M2	FQPF5N50C	500V,5A
R56	47 kΩ	1/4W	M3	FQPF5N50C	500V,5A
R57	47Ω	1/4W		Fuse	•
R58	47 kΩ	1/4W	Fuse	3A/250V	
	Capacit	or		TNR	
C1	47nF/275V _{AC}	Box Capacitor	TNR	471	
C2	150nF/275V _{AC}	Box Capacitor			
C3	2200pF/3kV	Ceramic Capacitor		NTC	
C4	2200pF/3kV	Ceramic Capacitor	NTC	10D-09	
C5	0.22µF/630V	Miller Capacitor		Line Fi	Iter
C6	12nF/50V	Ceramic Capacitor	LF1	40mH	
C7	22µF/50V	Electrolytic Capacitor		Transfor	mer
C8	39pF/50V	Ceramic Capacitor	L1	0.94mH (75T:10T)	EI2820
C9	1µF/50V	Ceramic Capacitor		Induct	or
C10	0.1µF/50V	Ceramic Capacitor	L2	3.2mH (130T)	El2820
C11	47µF/450V	Electrolytic Capacitor	L3	3.2mH (130T)	EI2820
C50	10µF/50V	Electrolytic Capacitor		IC	
C51	1µF/50V	Ceramic Capacitor	U1	FAN7535	Fairchild Semiconductor
C52	0.47µF/25V	Ceramic Capacitor, 5%			
C53	100nF/50V	Ceramic Capacitor			
C54	470pF/1kV	Ceramic Capacitor			

(

FAN7535 Rev. 1.0.0

FAN7535 — PFC & Ballast Control IC

SEMICONDUCTOR

FAN7535

I

PFC

Qo

Ballast Control IC

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEX[®] Build it Now™ CorePLUS™ *CROSSVOLT*™ CTL™ Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series ™ FACT[®] FAST[®] FastvCore™ FlashWriter[®]* FRFET® Global Power Resource^{su} Green FPS™ Green FPS™e-Series™ **GTO™** I-LO™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR[®]

FPS™

PDP-SPM™ Power220® Power247® POWEREDGE[®] Power-SPM™ PowerTrench[®] Programmable Active Droop™ QFET[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure[™] SMART START™ SPM® **STEALTH™** SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SyncFET™ General The Power Franchise® performed by the second second

 fmenchise

 TinyBoost™

 TinyBuck™

 TinyLogic®

 TINYOPTO™

 TinyPower™

 TinyPower™

 TinyWire™

 µSerDes™

 UHC®

 Ultra FRFET™

 UniFET™

 VCX™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC