

Trench gate field-stop IGBT M series, 650 V, 15 A low-loss in a TO-220 package

Datasheet - production data

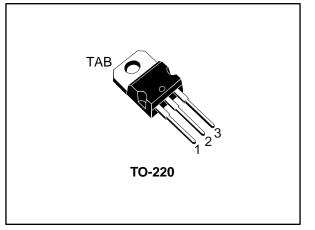
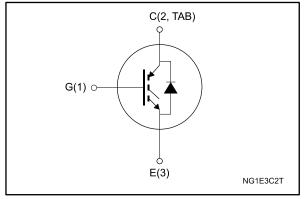



Figure 1: Internal schematic diagram

Features

- 6 µs of short-circuit withstand time
- V_{CE(sat)} = 1.55 V (typ.) @ I_C = 15 A
- Tight parameter distribution
- Safer paralleling
- Positive V_{CE(sat)} temperature coefficient
- Low thermal resistance
- Soft and very fast recovery antiparallel diode
- Maximum junction temperature: T_J = 175 °C

Applications

- Motor control
- UPS
- PFC
- General purpose inverter

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $V_{CE(sat)}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Order code	Marking	Package	Packing
STGP15M65DF2	G15M65DF2	TO-220	Tube

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	
4	Packag	e information	13
	4.1	TO-220 type A package information	14
5	Revisio	on history	

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage (V _{GE} = 0 V)	650	V
1.	Continuous collector current at T _C = 25 °C	30	А
lc	Continuous collector current at T _c = 100 °C	15	А
ICP ⁽¹⁾	Pulsed collector current	60	А
V _{GE}	Gate-emitter voltage	±20	V
IF	Continuous forward current at T _C = 25 °C	30	А
lF	Continuous forward current at T _c = 100 °C		А
I _{FP} ⁽¹⁾	Pulsed forward current 60		А
Ртот	Total dissipation at $T_c = 25 \ ^{\circ}C$	136	W
Tstg	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter Value			
RthJC	Thermal resistance junction-case IGBT	1.1	°C/W	
RthJC	Thermal resistance junction-case diode 2.08		°C/W	
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W	

2 Electrical characteristics

 $T_J = 25 \ ^{\circ}C$ unless otherwise specified.

I able 4: Static characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 V, I_C = 250 \mu A$	650			V
		V_{GE} = 15 V, I _C = 15 A		1.55	2.0	
V _{CE(sat)} Collector- voltage	Collector-emitter saturation	V _{GE} = 15 V, I _C = 15 A T _J = 125 °C		1.9		V
	Voltago	V _{GE} = 15 V, I _C = 15 A T _J = 175 °C		2.1		
		I⊧ = 15 A		1.7	2.6	V
VF	Forward on-voltage	I _F = 15 A T _J = 125 °C		1.5		V
		I _F = 15 A T _J = 175 °C		1.4		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 500 \ \mu A$	5	6	7	V
ICES	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
IGES	Gate-emitter leakage current	$V_{CE} = 0 \text{ V}, \text{ V}_{GE} = \pm 20 \text{ V}$			±250	μA

Table 4: Static characteristics

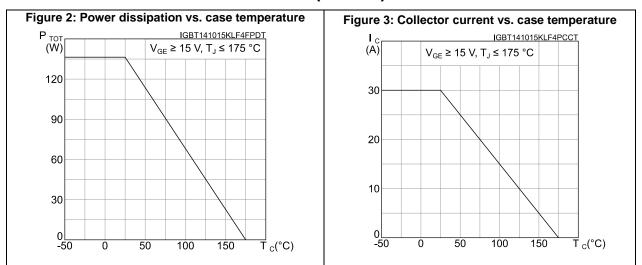
Table 5: Dynamic characteristics

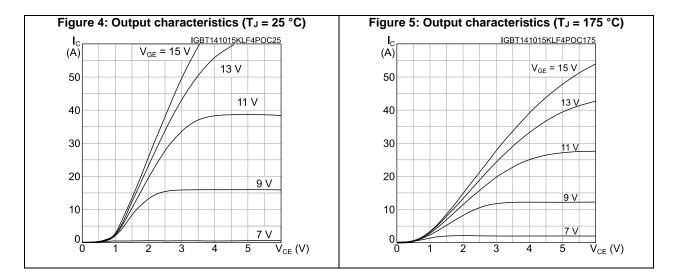
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	1250	-	pF
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	80	-	pF
Cres	Reverse transfer capacitance		-	25	-	pF
Qg	Total gate charge	$V_{CC} = 520 \text{ V}, \text{ I}_{C} = 15 \text{ A},$	-	45	-	nC
Q _{ge}	Gate-emitter charge	V _{GE} = 0 to 15 V (see <i>Figure 30:</i> " <i>Gate</i>	-	11	-	nC
Q _{gc}	Gate-collector charge	charge test circuit"	-	15	-	nC

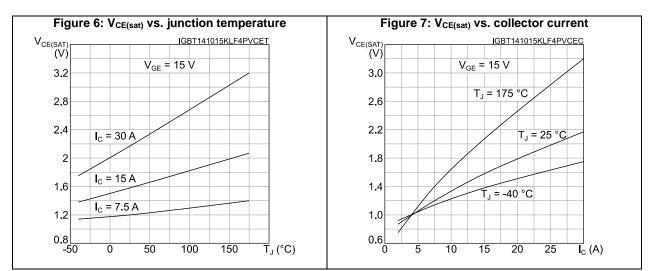
Electrical characteristics

	Table 6: IGBT switching characteristics (inductive load)					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			24	-	ns
tr	Current rise time			7.8	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 15 A,		1570	-	A/µs
$t_{d(off)}$	Turn-off delay time	$V_{GE} = 15 \text{ V}, \text{ R}_{G} = 12 \Omega$		93	-	ns
t _f	Current fall time	(see Figure 29: " Test circuit		106	-	ns
Eon ⁽¹⁾	Turn-on switching energy	for inductive load switching")		0.09	-	μJ
E _{off} ⁽²⁾	Turn-off switching energy			0.45	-	μJ
Ets	Total switching energy			0.54	-	μJ
t _{d(on)}	Turn-on delay time			24.8	-	ns
tr	Current rise time			9.2	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 15 A,		1300	-	A/µs
t _{d(off)}	Turn-off delay time	R _G = 15 Ω, V _{GE} = 15 V, T ₋ I = 175 °C		96	-	ns
t _f	Current fall time	(see Figure 29: " Test circuit		169	-	ns
Eon ⁽¹⁾	Turn-on switching energy	for inductive load switching")		0.22	-	μJ
E _{off} ⁽²⁾	Turn-off switching energy			0.61	-	μJ
E _{ts}	Total switching energy			0.83	-	μJ
+	Short circuit withstand time	V _{CC} ≤ 400 V, V _{GE} = 15 V, T _{Jstart} = 150 °C	6		-	
t _{sc}	Short-circuit withstand time	V _{CC} ≤ 400 V, V _{GE} = 13 V, T _{Jstart} = 150 °C	10		-	μs

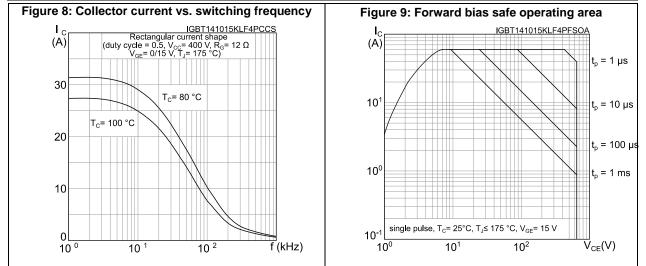
Notes:

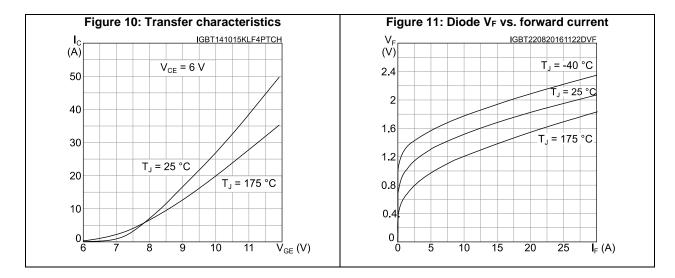

⁽¹⁾Including the reverse recovery of the diode. ⁽²⁾Including the tail of the collector current.

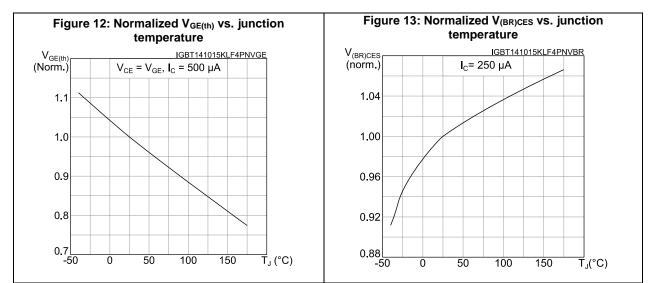

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trr	Reverse recovery time		-	142	-	ns
Qrr	Reverse recovery charge	$I_F = 15 \text{ A}, V_R = 400 \text{ V},$	-	525	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V, di/dt = 1000 A/µs	-	13.4	-	Α
dlrr//dt	Peak rate of fall of reverse recovery current during t _b	(see Figure 29: " Test circuit for inductive load switching")	-	790	-	A/µs
Err	Reverse recovery energy		-	64	-	μJ
t _{rr}	Reverse recovery time		-	241	-	ns
Qrr	Reverse recovery charge	IF = 15 A, VR = 400 V, VGE = 15 V,	-	1690	-	nC
Irrm	Reverse recovery current	di/dt = 1000 A/µs,	-	20	-	Α
dlrr//dt	Peak rate of fall of reverse recovery current during t _b	T _J = 175 °C (see Figure 29: " Test circuit for inductive load switching")	-	420	-	A/µs
Err	Reverse recovery energy	······································	-	176	-	μJ


Table 7: Diode switching	characteristics	(inductive load)	•
Table 7. Blode Switching	una autoristics	(1114461146 1044)	,

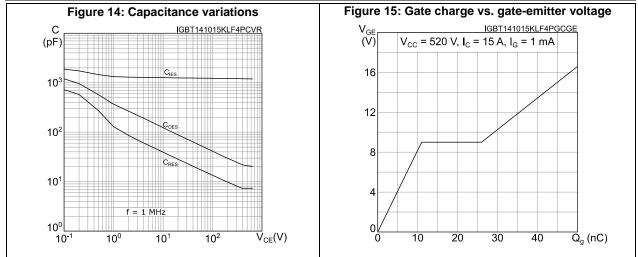
2.1 Electrical characteristics (curves)

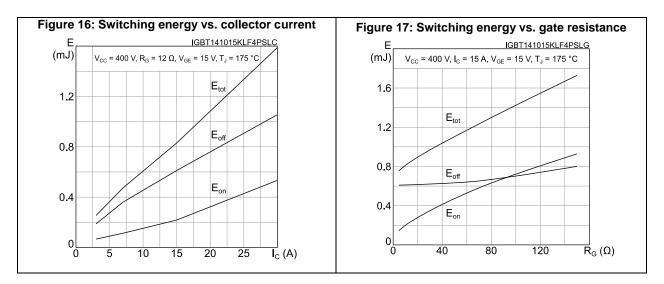


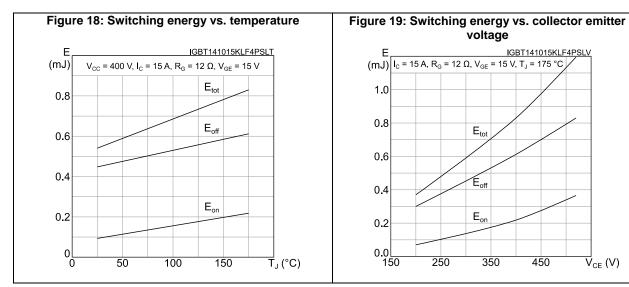


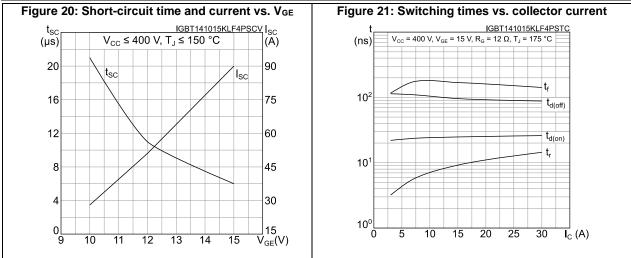


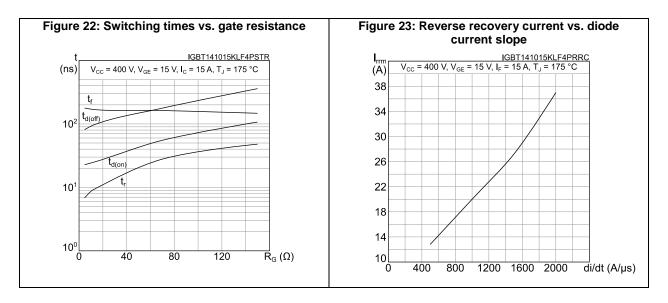
57

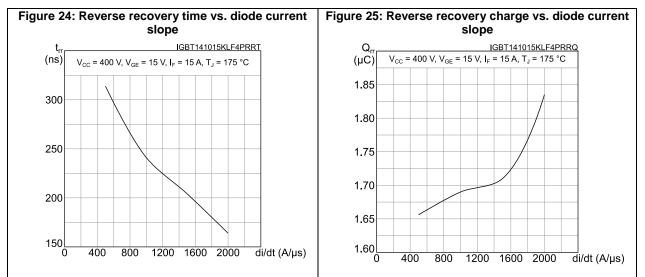

Electrical characteristics





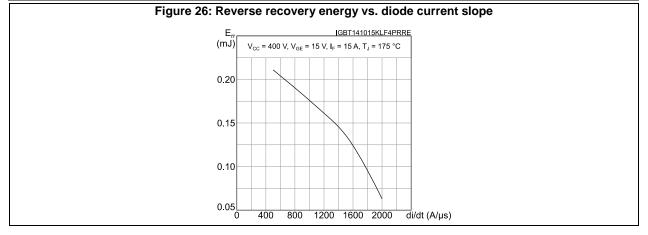


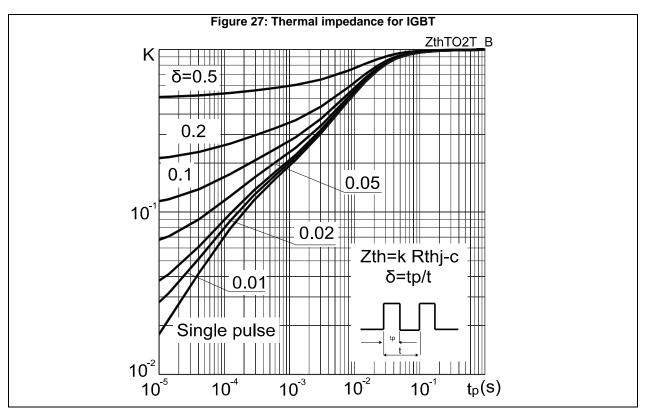


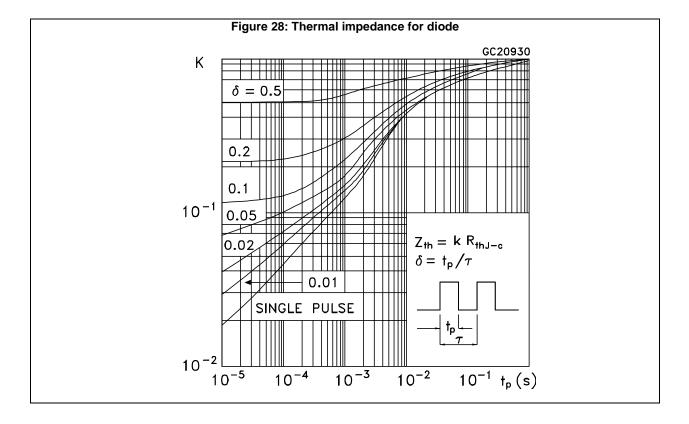


57

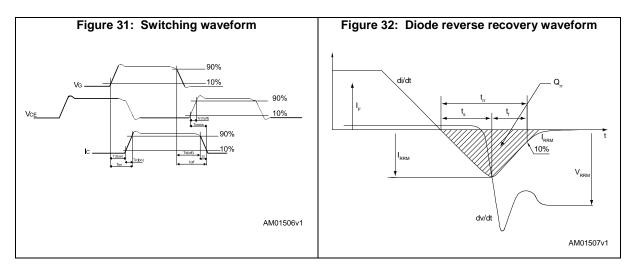
Electrical characteristics



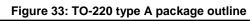


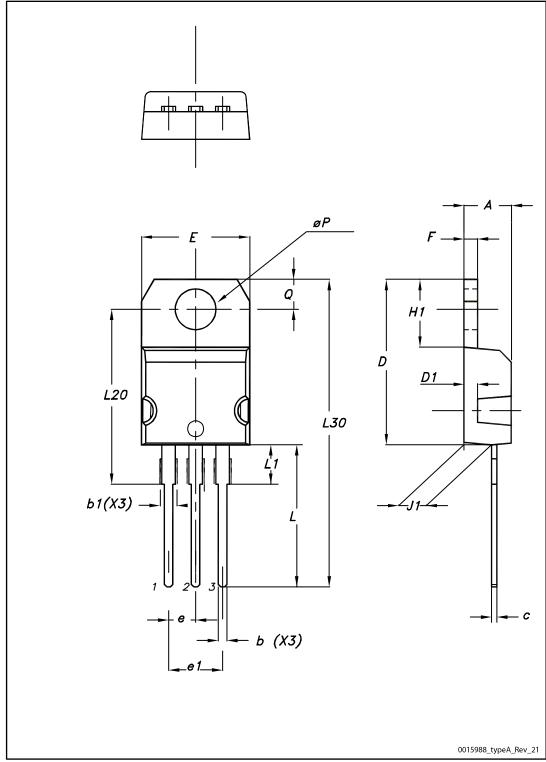

Electrical characteristics

STGP15M65DF2



3 Test circuits




4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

65DF2			Package information	
Table 8: TO-220 type A package mechanical data				
Dim		mm		
Dim.	Min.	Тур.	Max.	
A	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.55	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10.00		10.40	
e	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13.00		14.00	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
øP	3.75		3.85	
Q	2.65		2.95	

Revision history 5

Table 9: Document revision history

Date	Revision	Changes
14-Oct-2015	1	First release.
13-Nov-2015	2	Document status promoted from preliminary to production data.
22-Aug-2016	3	Updated Table 2: "Absolute maximum ratings" and Table 6: "IGBT switching characteristics (inductive load)". Updated Figure 16: "Switching energy vs. collector current", Figure 17: "Switching energy vs. gate resistance", Figure 18: "Switching energy vs. temperature" and Figure 19: "Switching energy vs. collector emitter voltage". Changed Figure 11: "Diode VF vs. forward current".
28-Apr-2017	4	Modified: title, features and applications on cover page. Modified <i>Table 4: "Static characteristics", Table 5: "Dynamic characteristics", Table 7: "Diode switching characteristics (inductive load)".</i> Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

