VS-HFA140FA120

Vishay Semiconductors

HEXFRED[®] Ultrafast Soft Recovery Diode, 140 A

PRIMARY CHARACTERISTICS				
V _R	1200 V			
V _F (typical)	2.8 V			
t _{rr} (typical)	48 ns			
$I_{F(DC)}$ at T_C , per module	140 A at 74 °C			
$I_{F(AV)}$ at T_{C} , per module	140 A at 46 °C			
Package	SOT-227			

FEATURES

- Fast recovery time characteristic
- Electrically isolated base plate
- Large creepage distance between terminal
- · Simplified mechanical designs, rapid assembly
- Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

The dual diode series configuration VS-HFA140FA120 is used for output rectification or freewheeling/clamping operation and high voltage application.

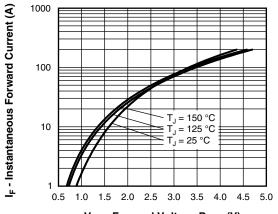
The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built.

These modules are intended for general applications such as HV power supplies, electronic welders, motor control and inverters.

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Cathode to anode voltage	V _R		1200	V
Continuous forward current per leg	I_	I _F T _C = 74 °C	70	
per module	١F		140	А
Single pulse forward current	I _{FSM}	T _J = 25 °C	350	
Maximum power dissipation, per leg	PD	T _C = 25 °C	357	W
Maximum power dissipation, per leg	FD	T _C = 100 °C	143	vv
RMS isolation voltage	VISOL	Any terminal to case, t = 1 minute	2500	V
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA	1200	-	-	
Forward voltage, per leg		I _F = 60 A	-	2.8	4.0	v
	V _{FM}	I _F = 120 A	-	3.6	5.3	
		I _F = 60 A, T _J = 125 °C	-	2.7	-	
		I _F = 60 A, T _J = 150 °C	-	2.65	-	
Reverse leakage current, per leg	I _{RM}	V _R = V _R rated	-	2.0	75	μA
		$T_J = 125 \text{ °C}, V_R = V_R \text{ rated}$	-	1.6	5	mA
		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	5	10	ША

Revision: 05-Jan-18 1 Document Number: 94746 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1 \text{ A}; \text{ d}I_F/\text{d}t = 200 \text{ A}/\mu\text{s}; V_R = 30 \text{ V}$		-	48	-	
Reverse recovery time, per leg	t _{rr}	T _J = 25 °C		-	145	-	ns
		T _J = 125 °C		-	218	-	
Peak recovery current, per leg		$T_J = 25 \ ^\circ C$	l _F = 50 A dl _F /dt = - 200 A/μs	-	13	-	A
Feak recovery current, per leg	IRRM	T _J = 125 °C	$V_{\rm R} = 200 \text{ V}$	-	18	-	~
Poveres resource shares per les		T _J = 25 °C	v _R – 200 v	-	910	-	nC
Reverse recovery charge, per leg Q _{rr}	T _J = 125 °C		-	1920	-	nc	
Junction capacitance, per leg	CT	V _R = 1200 V		-	27	-	pF

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Junction to case, single leg conducting	D		-	-	0.35	
Junction to case, both legs conducting	R _{thJC}		-	-	0.175	°C/W
Case to heatsink	R _{thCS}	Flat, greased surface	-	0.05	-	
Weight			-	30	-	g
Mounting torque		Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)
Mounting torque		Torque to heatsink	-	-	1.8 (15.9)	Nm (lbf.in)
Case style				S	OT-227	

V_{FM} - Forward Voltage Drop (V)

Fig. 1 - Typical Forward Voltage Drop Characteristics

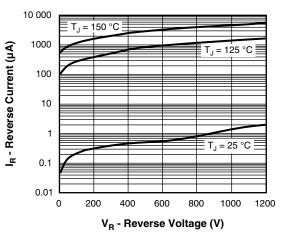
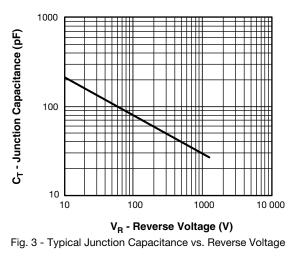
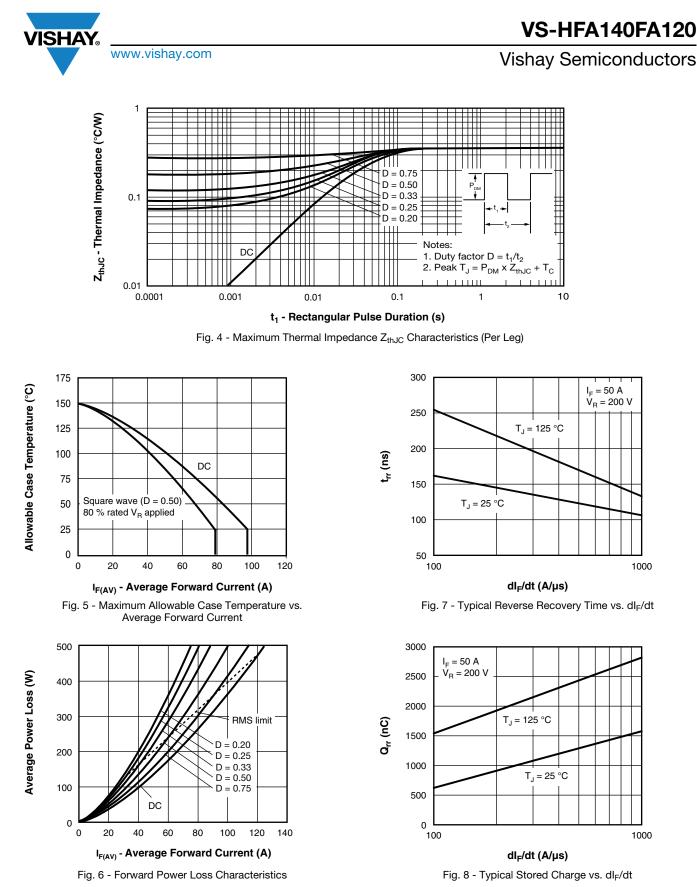




Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Revision: 05-Jan-18	2	Document Number: 94746
For technical questions within your region:	DiodesAmericas@vishay.com, DiodesAsia@visha	<u>y.com, DiodesEurope@vishay.com</u>
	E WITHOUT NOTICE. THE PRODUCTS DESCRIB	
ARE SUBJECT TO SPEC	FIC DISCLAIMERS, SET FORTH AT www.vishav.	.com/doc?91000

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = forward power loss = $I_{F(AV)} \times V_{FM}$ at ($I_{F(AV)}/D$) (see fig. 5); Pd_{REV} = inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at V_{R1} = rated V_R

Revision: 05-Jan-18

3

Document Number: 94746

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-HFA140FA120

Vishay Semiconductors

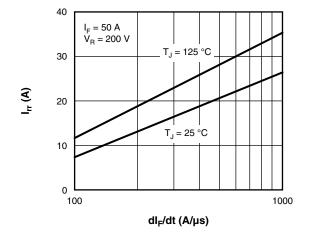


Fig. 9 - Typical Peak Recovery Current vs. dI_F/dt

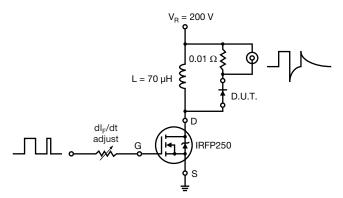


Fig. 10 - Reverse Recovery Parameter Test Circuit

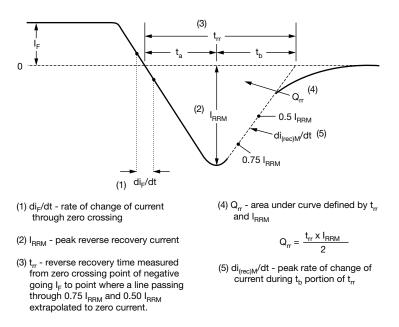


Fig. 11 - Reverse Recovery Waveform and Definitions

Revision: 05-Jan-18	4	Document Number: 94746
For technical questions within your region:	DiodesAmericas@vishay.com, DiodesAsia@vishay	v.com, DiodesEurope@vishay.com
	E WITHOUT NOTICE. THE PRODUCTS DESCRIBE	
ARE SUBJECT TO SPEC	CIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.c</u>	<u>com/doc?91000</u>

ORDERING INFORMATION TABLE

VS-HF F **Device code** Α 140 120 Α (2)(3) 5 (6)1 (4)7 1 2 3 4 5 Vishay Semiconductors product HEXFRED[®] family Process designator (A = electron irradiated) Average current (140 = 140 A) Circuit configuration (two separate diodes, parallel pin-out) 6 Package indicator (SOT-227 standard insulated base) 7 Voltage rating (120 = 1200 V)

CIRCUIT CONFI	CIRCUIT CONFIGURATION					
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Two separate diodes, parallel pin-out	F	Lead Assignment				

LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95423		
Part marking information	www.vishay.com/doc?95425		

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.