

Product Specification PE4306

Product Description

The PE4306 is a high linearity, 5-bit RF Digital Step Attenuator (DSA) covering a 31 dB attenuation range in 1dB steps, and is pin compatible with the PE430x series. This 50-ohm RF DSA provides both parallel (latched or direct mode) and serial CMOS control interface, operates on a single 3-volt supply and maintains high attenuation accuracy over frequency and temperature. It also has a unique control interface that allows the user to select an initial attenuation state at power-up. The PE4306 exhibits very low insertion loss and low power consumption. This functionality is delivered in a 4x4 mm QFN footprint.

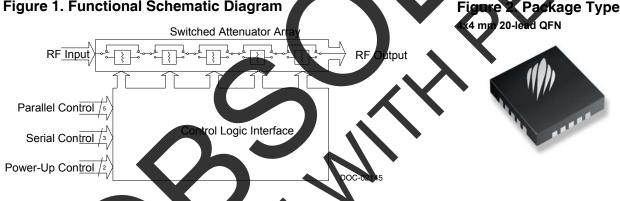

The PE4306 is manufactured on Peregrine's UltraCMOS[®] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Schematic Diagram

50Ω RF Digital Attenuator 5-bit, 31 dB, 1 – 4000 MHz

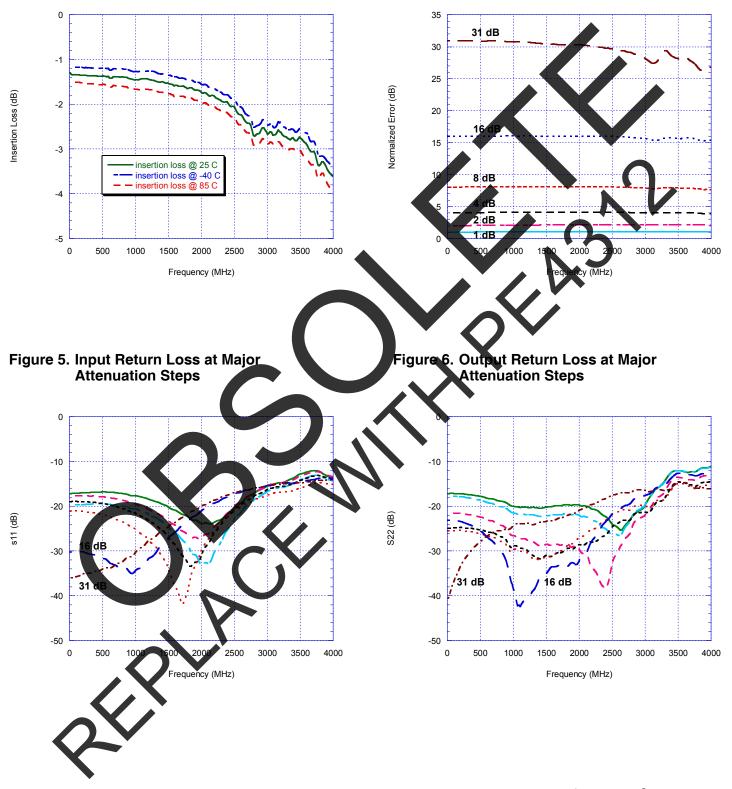
Features

- Attenuation: 1 dB steps to 31 dB
- Flexible parallel and serial programming interfaces
- Latched or direct mode
- Unique power-up state selection
- Positive CMOS control lo
- th attenuation accuracy and linearity Hi wer temperature and frequency
- Very low power consumption
- Single-supply operation
- 0Ω impedance
- Pin compatible with PE430x series
- aged in a 20 Lead 4x4 mm QFN Paol

Table 1. Electrical Specification @ $+25^{\circ}C_{PD} = 3.0V$

Parameter	Test Conditions	Frequency	Minimum	Typical	Maximum	Units
Operation Frequency		1	1		4000	MHz
Insertion Loss ²		1–2200 MHz	-	1.5	2.25	dB
Attenuation Accuracy	Any hit or bit combination	1 ≤ 1000 MHz 1000 < 2200 MHz	-	-	$\pm(0.3 + 3\% \text{ of atten setting})$ $\pm(0.3 + 5\% \text{ of atten setting})$	dB dB
1 dB Compression ³		1–2200 MHz	30	34	-	dBm
Input IP3 ^{1, 2}	Two-tone inputs +18 dBm	1–2200 MHz	-	52	-	dBm
Return Loss	X	1–2200 MHz	15	20	-	dB
Switching Speed	50% control to 0.5 dB of final value		-	-	1	μS

ax input rating in Table 3 & Figures 3-13 for data across frequency 3 No solute maximum in Table 3


Document No. DOC-30007-2 | www.psemi.com

Typical Performance Data @ 25°C, V_{DD} = 3.0V unless otherwise noted

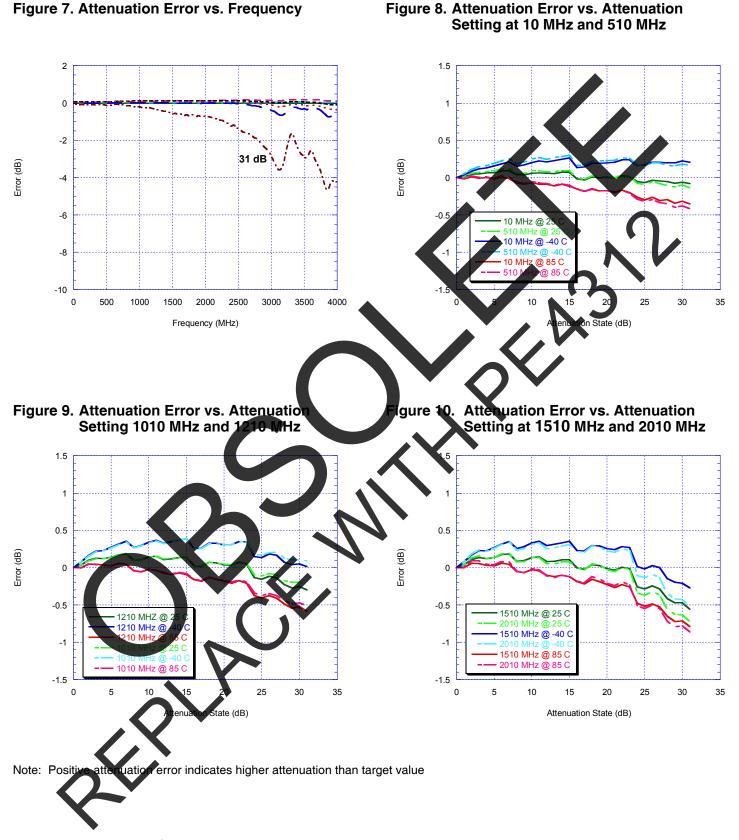
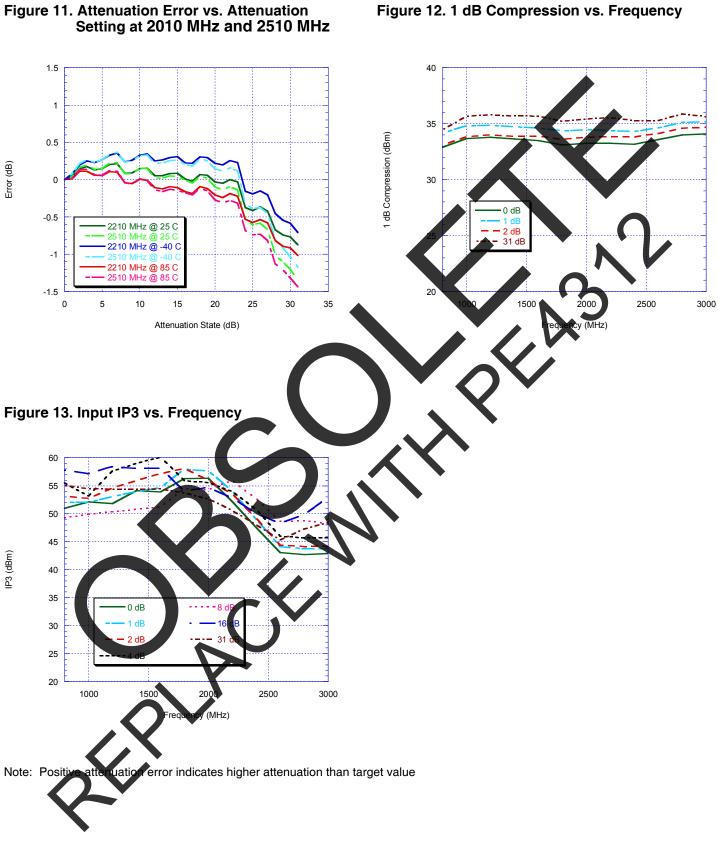
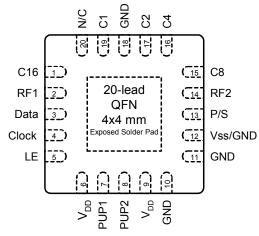

Figure 3. Insertion Loss

Figure 4. Attenuation at Major steps

Typical Performance Data @ 25°C, V_{DD} = 3.0V unless otherwise noted



Document No. DOC-30007-2 | www.psemi.com



Typical Performance Data @ 25°C, V_{DD} = 3.0V unless otherwise noted

Figure 14. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	C16	Attenuation control bit, 16 dB (Note 4)
2	RF1	RF port (Note 1)
3	Data	Serial interface data input (Note 4)
4	Clock	Serial interface clock input
5	LE	Latch Enable input (Note 2)
6	V _{DD}	Power supply pin
7	PUP1	Power-up selection bit
8	PUP2	Power-up selection bit
9	V _{DD}	Power supply pin
10	GND	Ground connection
11	GND	Ground connection
12	V _{ss} /GND	Negative supply voltage or GND connection (Note 3)
13	P/S	Parallel/Serial mode select
14	RF2	RF port (Note 1)
15	C8	Attenuation control bit, 8 dB
16	Ç4	Attenuation control bit, 4 dB
17	C2	Attenuation control bit, 2 dB
18	GND	Ground connection
19	01	Attenuation control bit, UdB
20	N/C	No connect. Can be connected to any bias
Paddle	GND	Ground for proper operation

Notes: 1. Both RF ports must be held at 0 V_{DC} or DC blocked with an external series capacitor

2. Latch Enable (LE) has an internal 100 k Ω resistor to V_{DD} 3. Connect pin 12 to aND to enable internal negative voltage generator. Connect pin 12 to V_{SS} (V_{pO} to bypass and disable internal negative voltage generator.

4. Place a 10 k Ω registor reserves, as close to pin as possible to avoid frequency resonance. See "Resistor on Pin 1 & 3" paragraph

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the 5x5 mm QFN package is NSL1.

Document No. DOC-30007-2 | www.psemi.com

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V _{DD}	Power supply voltage	-0.3	4.0	V
Vı	Voltage on any DC input	-0.3	V _{DD} + 0.3	V
T _{ST}	Storage temperature range	-65	150	°C
P _{IN}	Input power (50Ω)		+30	dBm
V _{ESD}	ESD voltage (Human Body Model)		500	V

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Table 4. Operating Ranges

Tuble II. operating hunged								
Min	Тур	Max	Units					
2,7	3.0	3.3	V					
		100	μA					
0.7xV _{DD}	•		V					
		$0.3 \mathrm{xV}_{\mathrm{DD}}$	V					
		1	μA					
		+24	dBm					
-40		85	°C					
	Min 2,7	Min Typ 2.7 3.0 7.7xV _{DD}	Min Typ Max 2.7 3.0 3.3 100 100 1.7xV _{DD} 0.3xV _{DD} 1 1 +24					

Exposed Solder Pad Connection

The exposed solder pad on the bottom of the package must be grounded for proper device operation.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[®] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rate specified in *Table 3*.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[®] devices are immune to latch-up.

Switching Frequency

The PE4306 has a maximum 25 kHz switching rate.

Resistor on Pin 1 & 3

A 10 k Ω resistor on the inputs to Pin 1 & 3 (see *Figure 16*) will eliminate package resonance between the RF input pin and the two digital inputs. Specified attenuation error versus frequency performance is dependent upon this condition.

Programming Options

Parallel/Serial Selection

Either a parallel or serial interface can be used to control the PE4306. The P/S bit provides this selection, with P/S = LOW selecting the parallel interface and P/S = HIGH selecting the serial interface.

Parallel / Direct Mode Interface

The parallel interface consists of five CMOScompatible control lines that select the desired attenuation state, as shown in *Table 5*.

The parallel interface timing requirements are defined by *Figure 18* (Parallel Interface Timing Diagram), *Table 9* (Parallel Interface AC Characteristics), and switching speed (*Table 1*).

For parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per *Figure 18*) to latch new attenuation state into device.

For direct programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct Mode is ideal for manual control of the device (using hardwire, switches, or jumpers).

Table 5. Truth Table

P/S	C16	C8	C4	C2	C1	Attenuation State	
0	0	0	0	0	0	Reference Loss	
0	0	0	0	0		1 dB	
0	0	0	0		0	2 dB	
0	0	0	1	0	Q	4 dB	
0	0	1	0	0	0	8 08	
0	1	0	0	0	0	16 dB	
0	1	1		1	1	31 dB	

Note: Not all 32 possible combinations of C1-C16 are show

Serial Interface

The PE4306's serial interface is a 6-bit serial-in, parallel-out shift register outfiered by a transparent latch. The latches controlled by three CMOScompatible signals. Data, Clock, and Latch Enable (LE). The Data and Clock inputs allow data to be serially entered into the shift register, a process that is independent of the state of the LE input.

©2003-2013 Peregrine Semiconductor Corp. All rights reserved.

The LE input controls the latch. When LE is HIGH, the latch is transparent and the contents of the serial shift register control the attenuator. When LE is brought LOW, data in the shift register is latched.

The shift register should be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data. The stop bit (EO) of the data should always be low to prevent an unknown state in the device. The timing for this operation is defined by *Figure 17* (Serial Interface Timing Diagram) and *Table 8* (Serial Interface AC Characteristics).

Power-up Control Settings

The PE4306 always assumes a specifiable attenuation setting on power-up. This feature exists for both the Serial and Parallel modes of operation, and allows a known attenuation state to be established before an initial serial or parallel control word is provided.

When the attenuator powers up in Serial mode (P/S = 1), the five control bits and a stop bit are set to whatever data is present on the five parallel data inputs (C1 to C16). This allows any one of the 32 attenuation settings to be specified as the power-up state.

When the attenuator powers up in Parallel mode (P/ S = 0) with LE = 0, the control bits are automatically set to one of four possible values. These four values are selected by the two power-up control bits, PUP1 and PUP2, as shown in *Table 6* (Power-Up Truth Table, Parallel Mode).

Table 6. Power-Up Truth Table, Parallel Interface Mode

P/S	LE	PUP2	PUP1	Attenuation State
0	0	0	0	Reference Loss
0	0	1	0	8 dB
0	0	0	1	16 dB
0	0	1	1	31 dB
0	1	Х	Х	Defined by C1-C16

Note: Power up with LE = 1 provides normal parallel operation with C1-C16, and PUP1 and PUP2 are not active.

Evaluation Kit

The Digital Attenuator Evaluation Kit board was designed to ease customer evaluation of the PE4306 DSA.

J9 is used in conjunction with the supplied DC cable to supply V_{DD} , GND, and $-V_{DD}$. If use of the internal negative voltage generator is desired, then connect $-V_{DD}$ (black banana plug) to ground. If an external $-V_{DD}$ is desired, then apply -3V.

J1 should be connected to the LPT1 port of a PC with the supplied control cable. The evaluation software is written to operate the DSA in serial mode, so switch 7 (P/S) on the DIP switch SW1 should be ON with all other switches off. Using the software, enable or disable each attenuation setting to the desired combined attenuation. The software automatically programs the DSA each time an attenuation state is enabled or disabled.

To evaluate the power up options, first disconnect the control cable from the evaluation board. The control cable must be removed to prevent the PC port from biasing the control pins.

During power up with P/S = 1 high and LE = 0 or P/S = 0 low and LE = 1, the default power-up signal attenuation is set to the value present on the five control bits on the five parallel data inputs (C1 to C16). This allows any one of the 32 attenuation settings to be specified as the power-up state.

During power up with P/S = 0 high and LE = 0, the control bits are automatically set to one of four possible values presented through the PUP interface. These four values are selected by the two power-up control bits, PUP1 and PUR2, as shown in the Table 6.

Pin 20 is open and can be connected to any bias.

Resistor on Pin 1 & 3

A 10 k Ω resistor on the inputs to pins 1 & 3 (Figure 16) will eliminate package resonance between the RF input pin and the two digital inputs. Specified attenuation error versus frequency performance is dependent upon this condition.

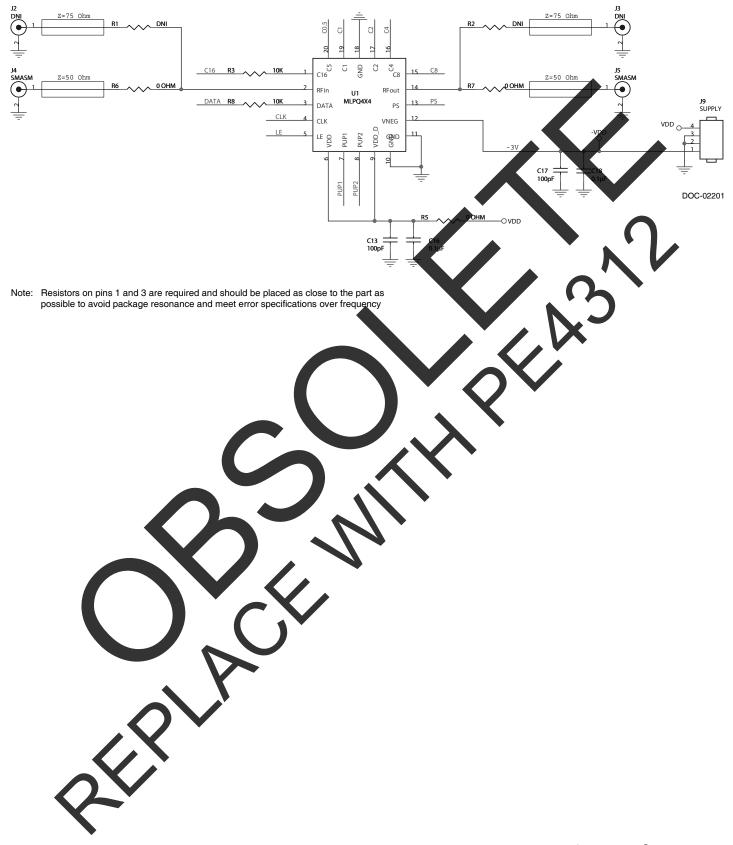
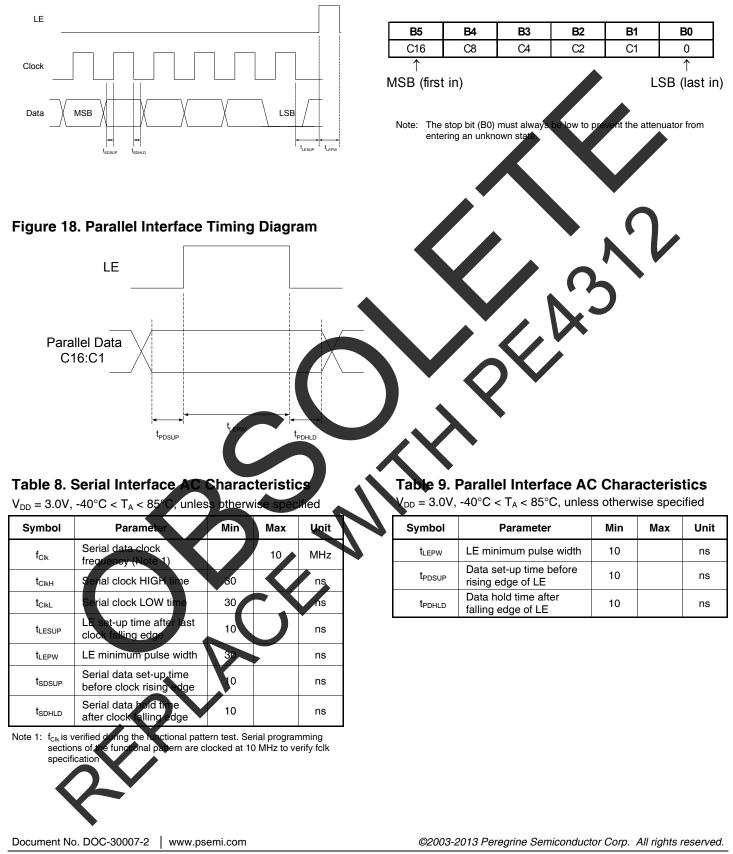

Document No. DOC-30007-2 | www.psemi.com

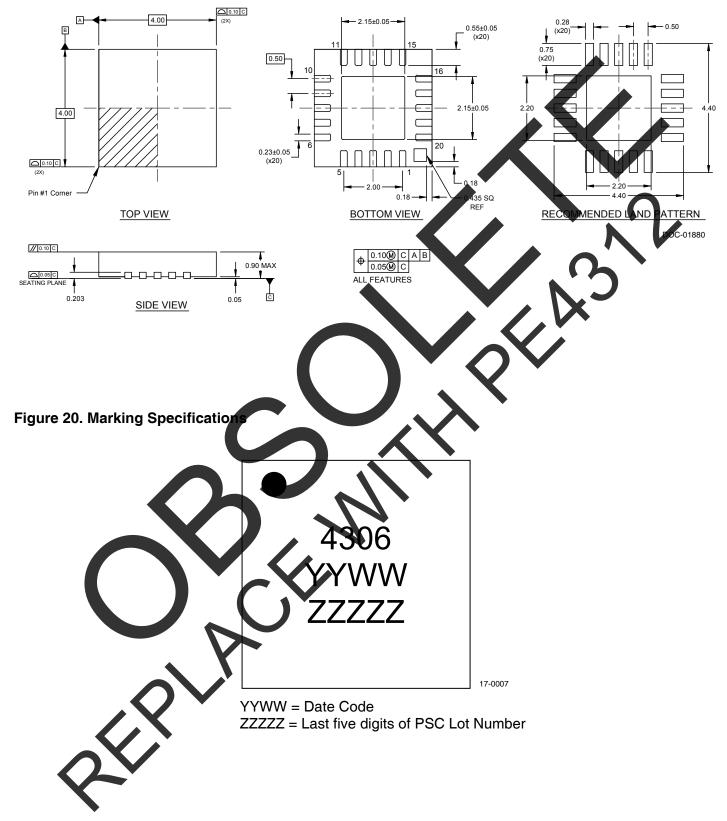
Figure 15. Evaluation Board Layout

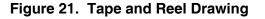
DOC-02344

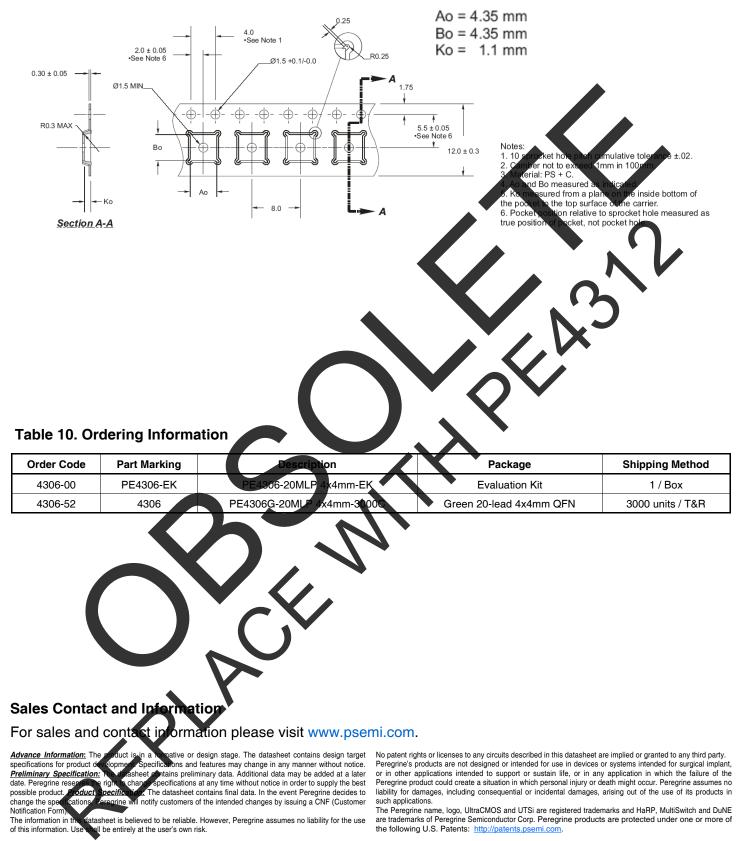
Figure 16. Evaluation Board Schematic


©2003-2013 Peregrine Semiconductor Corp. All rights reserved.

Document No. DOC-30007-2 | UltraCMOS® RFIC Solutions


Table 7. 5-Bit Attenuator Serial ProgrammingRegister Map




Figure 19. Package Drawing

20-lead 4 x 4 mm QFN

Document No. DOC-30007-2 | www.psemi.com