

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF2411 - IntelliMAX ${ }^{\text {™ }} 6$ V / 6 A - Rated Bi-Directional Switch with Slew Rate Control and RCB

Features

- Capability: 6 V
- Low Ron
- $\quad 10 \mathrm{~m} \Omega$ at 5 V at PWRA or PWRB (Typ.)
- $\quad 12 \mathrm{~m} \Omega$ at 3.8 V at PWRA or PWRB (Typ.)
- Maximum Current Capability: 6 A (Bi-Directional)
- Ultra-Low $\mathrm{l}_{\mathrm{Q}}:<1 \mu \mathrm{~A}$
- Active LOW Control Pin
- 2 ms Long Slew Rate
- Reverse Current Blocking (RCB) during OFF
- Robust ESD Capability:
- $\quad 5 \mathrm{kV}$ HBM, 2 kV CDM
- 15 kV Air Discharge
- 8 kV Contact Discharge Under IEC 61000-4-2

Applications

- Smartphone / Tablet PC
- Mobile Devices
- Portable Media Devices

Description

The FPF2411 is a $6 \mathrm{~V} / 6$ A-rated bi-directional load switch, consisting of a slew-rate-controlled, low-onresistance, P-channel MOSFET switch with protection features. The slew-rate-controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 2.3 V to 5.5 V .
Bi-directional switching allows reverse current from $V_{\text {Out }}$ to $\mathrm{V}_{\mathbb{I}}$. The switching is controlled by active-LOW logic input the ONB pin. The FPF2411 is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).
The FPF2411 is available in 12-bump, 1.235 mm x 1.625 mm Wafer-Level Chip-Scale Package (WLCSP) with 0.4 mm pitch.

Ordering Information

Part Number	Top Mark	$R_{\text {ON }}$ (Typ.) at 3.8 V	Output Discharge	ONB Pin Functionality	Package
FPF2411BUCX_F130	QR	$12 \mathrm{~m} \Omega$	No	Active LOW	12-Ball Wafer-Level Chip-Scale Package (WLCSP), 3 4 4 Array, 0.4 mm Pitch, 250 $\mu \mathrm{m}$ Ball

Application Diagrams

Figure 1. High-Level Application Diagrams

Note: Adding a PTVS such as RDP3101B is recommended at PWRB node in order to avoid device damage from surge or equivalent stress.
Figure 2. Battery Isolation Application

Block Diagrams

Figure 3. Block Diagram

Application Scenario

Table 1. PWRA and PWRB can be Input or Output, Depending on Scenario

PWRA	PWRB	ONB	Operations
X	X	HIGH	OFF state PWRA and PWRB are isolated. Current more than I_{sD} or $I_{R C B}$ is NOT allowed.
$2.3 \sim 5.5 \mathrm{~V}$	Open	HIGH \rightarrow LOW	Turn-on with 2 ms of t_{R} at PWRB.
Open	$2.3 \sim 5.5 \mathrm{~V}$	HIGH \rightarrow LOW	Turn-on with 2 ms of t_{R} at PWRA.
$2.3 \sim 5.5 \mathrm{~V}$	Open	LOW	ON state Operating current is from PWRA. No problem with $6 \mathrm{~A} \mathrm{DC} \mathrm{current} \mathrm{flowing}$.
Open	$2.3 \sim 5.5 \mathrm{~V}$	LOW	ON state Operating current is from PWRB. No problem with 6 A DC current flowing.
$2.3 \sim 5.5 \mathrm{~V}$	Open	LOW \rightarrow HIGH	Turn-off with 1 ms of t_{F} at PWRB.
Open	$2.3 \sim 5.5 \mathrm{~V}$	LOW \rightarrow HIGH	Turn-off with 1 ms of t_{F} at PWRA.

Note:

1. $X=$ Don't care.

Timing Diagrams

Figure 4. Dynamic Behavior

Pin Configuration

Figure 5. Top View

Figure 6. Bottom View

Pin Descriptions

Pin \#	Name	Description
A2, B2, B4, C2, C4	PWRA	Power Input / Output: Bi-directional power path
A1, A3, B1, B3, C3	PWRB	Power Input / Output: Bi-directional power path
C1	GND	Ground
A4	ONB	ON/OFF Control Input: Active LOW.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter	Min.	Max.	Unit
$\mathrm{V}_{\text {PIN }}$	PWRA, PWRB, ONB to GND		-0.3	6.0	V
Isw	Maximum Continuous Switch Current			6	A
$t_{\text {PD }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.48	W
T_{J}	Operating Junction Temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient (1in. ${ }^{2}$ Pad of 2 oz. Copper)			$84.1^{(2)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	5		kV
		Charged Device Model, JESD22-C101	2		
	IEC61000-4-2 System Level	Air Discharge (PWRA, PWRB, ONB to GND)	15		
		Contact Discharge (PWRA, PWRB, ONB to GND)	8		

Note:

2. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$V_{\text {PWRn }}$	PWRA, PWRB	2.3	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

DC / AC Characteristics
Unless otherwise noted, $\mathrm{V}_{\mathbb{I}}=2.3$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; typical values are at PWRA or PWRB $=4.2 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
VPWRA $V_{\text {PWRB }}$	Input Voltage		2.3		5.5	V
ISD	Shutdown Current	PWRA=ONB=5.5 V, PWRB=Open OR PWRB=ONB=5.5 V, PWRA=Open			1	$\mu \mathrm{A}$
IpwRA lpWRB	Quiescent Current	ONB=GND, lout=0 mA			1	$\mu \mathrm{A}$
Ron	On-Resistance	PWRA, PWRB=3.8 V, Iout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		12	17	$\mathrm{m} \Omega$
		PWRA, PWRB $=5 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	16	
V_{IH}	ONB, Input Logic HIGH Voltage ${ }^{(3)}$	$\mathrm{PWRn}=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=50 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}($ Max. $)=60^{\circ} \mathrm{C}$	4.3			V
		PWRn=3.6 V, ILOAd $=50 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}$ (Max.) $=60^{\circ} \mathrm{C}$	3.4			
VIL	ONB, Input Logic LOW Voltage ${ }^{(3)}$	PWRn $=4.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=50 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}($ Max. $)=60^{\circ} \mathrm{C}$			0.4	
		PWRn=3.6 V, ILOAD $=50 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}($ Max. $)=60^{\circ} \mathrm{C}$			0.4	
$\mathrm{R}_{\text {PD }}$	Pull-Down Resistance at ONB			500	700	$\mathrm{k} \Omega$

Dynamic Characteristics: see definitions below

toon	Turn-On Delay ${ }^{(4,5,6)}$	PWRA or PWRB $=4.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$, ONB=HIGH to LOW	1.5	ms
t_{R}	Rise Time ${ }^{(4,5,6)}$		3.0	
ton	Turn-On Time ${ }^{(4,5,6)}$		4.5	
tooff	Turn-Off Delay ${ }^{(4,5,7)}$	PWRA or PWRB $=4.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$, ONB=LOW to HIGH	5.5	ms
$t_{\text {F }}$	Fall Time ${ }^{(4,5,7)}$		1.0	
toff	Turn-Off Time ${ }^{(4,5,7)}$		6.5	

Notes:

3. $\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$ is tested under $50 \mu \mathrm{~A}$ current load
4. This parameter is guaranteed by design and characterization; not production tested.
5. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{\text {F }}$ are defined in Figure 4.
6. $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{DON}}$.
7. $\mathrm{t}_{\mathrm{OFF}}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {DOFF }}$.

Table 2. $\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}[\mathrm{V}]$

$\mathbf{I}_{\text {LOAD }} \backslash \mathbf{V}_{\mathbf{B A T}}$	$\mathbf{2 . 7} \mathbf{V}$	$\mathbf{3 . 7} \mathbf{V}$	$\mathbf{4 . 3 5} \mathbf{~ V}$
0.1 mA	$1.8 / 0.7$	$2.9 / 0.9$	$3.4 / 1.0$
1 mA	$1.1 / 0.7$	$2.1 / 0.9$	$2.8 / 1.0$
3 mA	$1.1 / 0.7$	$2.1 / 0.9$	$2.7 / 1.0$
5 mA	$1.0 / 0.7$	$2.0 / 0.9$	$2.7 / 1.0$
10 mA	$0.9 / 0.7$	$1.9 / 0.8$	$2.4 / 0.9$
30 mA	$0.9 / 0.7$	$1.5 / 0.8$	$2.2 / 0.9$
50 mA	$0.9 / 0.7$	$1.2 / 0.8$	$1.9 / 0.9$
100 mA	$0.9 / 0.7$	$1.0 / 0.8$	$1.1 / 0.9$

Typical Performance Characteristics

Figure 7. PWRA Quiescent Supply Current vs. Temperature

Figure 9. PWRA Shutdown Supply Current vs. Temperature

Figure 11. Switch On Resistance vs. Temperature

Figure 13. On Resistance vs. PWRB Voltage

Figure 8. PWRB Quiescent Supply Current vs. Temperature

Figure 10. PWRB Shutdown Supply Current vs. Temperature

Figure 12. On Resistance vs. PWRA Voltage

Figure 14. Switch On Time vs. Temperature

Typical Performance Characteristics (Continued)

Figure 15. Switch Off Time vs. Temperature

Figure 16. Turn-On Response $\left(\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right.$)

Figure 17. Turn-OFF Response ($\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Operation and Application Description

The FPF2411 is an ultra-low-Ron P-channel load switch with bi-directional controlled turn-on and Reverse Current Blocking (RCB). The core is a $12 \mathrm{~m} \Omega \mathrm{P}$-channel MOSFET and controller capable of functioning over a wide input operating range of 2.3 V to 5.5 V . The ONB pin, active-LOW; controls the state of the switch. RCB functionality blocks unwanted reverse current during OFF states by power switch isolation between PWRA and PWRB.

Inrush Current

Inrush current occurs when the device is turned on. Inrush current is dependent on output capacitance and slew rate control capability, as expressed by:

$$
I_{I N R U S H}=C_{O U T} \times \frac{V_{I N}-V_{\text {INITIAL }}}{t_{R}}+I_{L O A D}
$$

where:
Cout: Output capacitance;
t_{R} : Slew rate or rise time at $V_{\text {out; }}$
V_{IN} : Input voltage;
$V_{\text {INitial: }}$ Initial voltage at Cout, usually GND; and load: Load current.

Higher inrush current causes higher input voltage drop, depending on the distributed input resistance and input capacitance. High inrush current can cause problems.

FPF2411 has a 3 ms of slew rate capability under $4.2 \mathrm{~V}_{\mathrm{IN}}$ at $1 \mu \mathrm{~F}$ of $\mathrm{C}_{\text {out }}$ and 10Ω of R_{L}. Inrush current can be minimized and no input voltage drop appears, as shown in Figure 16.

Reverse-Current Blocking

The reverse-current blocking feature protects the input source against current flow from output to input when the load switch is off by changing the internal body diode direction.

Bypass Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor; a capacitor must be placed between the PWRA or PWRB and GND pins. A ceramic capacitor of at least $1 \mu \mathrm{~F}$ placed close to the pins is usually sufficient.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance on normal and short-circuit operation. Using wide traces or large copper planes for all pins (PWRA, PWRB, ONB, and GND) minimizes the parasitic electrical effects and the case-to-ambient thermal impedance.

WLCSP Packing - Embossed Tape FPF2411BUCX Pin1 at 1 o'clock Rev0

Packing Description:
WLCSP products are classiffed underMoisture Sensitive Level 1 and are packed in moisture barrier bag for added protection.
The carrier tape is made from dissipative polystyrene or polycarbonate resin. The cover tape is a multiayer ilm primarily composed of polyester ilm, adhesive layer, heat activated seaiant, and ant-static sprayed agent. These reeled parts in standac option are shipped with 3000 units per 178 mm ciameter reel. Up to three reels are packed in each intermediate box. The reels is made ofpolydyrene plastic(anti-staticcosted or intrinsic).
These fill reels are individually baroode labeled and placed inside a pizza box made of recydabie corrugated brown paper with a Fairchild logo printing. The reel is packed single reel in the pizza box. And these pizza boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number ofparts shipped.

ESD Logo Label sample

F63TNR Label sample

Tape Leader and Trailer Configuration

WLCSP Embossed Tape Dimension

Dimensions are in millimeters

Package	$\begin{gathered} A_{0} \\ +l-0.05 \end{gathered}$	$\begin{gathered} \mathrm{Bo} \\ ++-0.05 \end{gathered}$	$\underset{+0.10}{ }$	$\begin{array}{\|c\|} \hline D_{1} \\ \text { min. } \\ \hline \end{array}$	$\underset{+/-0.1}{\mathrm{E}}$	$\left\lvert\, \begin{gathered} \mathrm{F} \\ +\ldots-0.1 \end{gathered}\right.$	$\begin{gathered} \mathrm{K}_{0} \\ +l-0.05 \end{gathered}$	$\begin{array}{r} P_{1} \\ T Y P \end{array}$	$\begin{aligned} & \text { Po } \\ & \text { TYP } \end{aligned}$	$\begin{gathered} P_{2} \\ +1-0.05 \end{gathered}$	$\begin{gathered} \text { TYP } \end{gathered}$	$\begin{gathered} \text { Tc } \\ +i-0.005 \end{gathered}$	$\begin{gathered} W \\ +1-0.3 \end{gathered}$	$\begin{aligned} & \text { Wc } \\ & \text { TYP } \end{aligned}$
FPF2411UCX	1.55	1.95	1.50	0.5	1.75	3.5	0.75	4	4	2.0	0.25	0.06	8	5.3

Notes: $A_{0}, B 0$, and Ko dimensionsare determined with respect to the EIA/JEDEC RS-481 rotational and lateral movement requirements(see sketches A, B, and C).

Physical Dimensions

Figure 18. 12-Ball, 3x4 Array, 0.4 mm Pitch, $250 \mu \mathrm{~m}$ Ball, Wafer-Level Chip-Scale Package (WLCSP)

Nominal Values

Bump Pitch	Overall Package Height	Silicon Thickness	Solder Bump Height	Solder Bump Diameter
0.4 mm	0.586 mm	0.378 mm	0.208 mm	0.260 mm

Product-Specific Dimensions

Product	D	E	\mathbf{X}	\mathbf{Y}
FPF2411BUCX_F130	1.235 mm	1.625 mm	0.2125 mm	0.2175 mm

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

